ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-09-24
    Description: Forests, Vol. 8, Pages 358: Available Nutrients Can Accumulate in Permanent Skid Trails Forests doi: 10.3390/f8100358 Authors: Kenton Stutz Helmer Schack-Kirchner Gerald Kändler Lea Landes Martin Linz Hannes Warlo Friederike Lang Forest harvesting removes and redistributes nutrients through felling and forwarding. Substantial quantities of nutrients can accumulate in brash mats on permanent skid trails, but their availability and uptake after multiple thinnings on soils susceptible to leaching are unknown. In this study, we modeled the deposition of base cations and phosphorus on a permanent skid trail after five thinnings of a Picea abies (L.) Karst. stand, and measured the resulting nutrient stocks in both the forest floor and mineral soil. An estimated 35%, 44%, 41%, and 61% of harvested Ca, K, Mg, and P, respectively, were redistributed to the skid trail. Of those deposited stocks, 32–65% of nutrients remained in decomposed brash material on the skid trail. Mineral soil stocks for Ca, K, and P were significantly higher in the skid trail than in the stand, which included minor increases in bioavailable pools. Skid trail root densities were not lower than the stand while bulk densities were only partially higher. Both would not limit nutrient uptake. There were no significant relations between needle nutrient concentrations and distance to the skid trail. Altogether, these results indicate that nutrient uptake from the skid trail was minimal despite their accumulation, chemical availability, and physical accessibility. This suggests that other factors such as liming and frequent thinning disturbances can repress uptake of available nutrients on skid trails.
    Electronic ISSN: 1999-4907
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-06-04
    Description: While differences in greenhouse gas (GHG) fluxes between ecosystems can be explained to a certain degree, variability of the same at the plot scale is still challenging. We investigated the spatial variability in soil-atmosphere fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) to find out what drives spatial variability on the plot scale. Measurements were carried out in a Scots pine (Pinus sylvestris L.) forest in a former floodplain on a 250 m2 plot, divided in homogenous strata of vegetation and soil texture. Soil gas fluxes were measured consecutively at 60 points along transects to cover the spatial variability. One permanent chamber was measured repeatedly to monitor temporal changes to soil gas fluxes. The observed patterns at this control chamber were used to standardize the gas fluxes to disentangle temporal variability from the spatial variability of measured GHG fluxes. Concurrent measurements of soil gas diffusivity allowed deriving in situ methanotrophic activity from the CH4 flux measurements. The soil emitted CO2 and consumed CH4 and N2O. Significantly different fluxes of CH4 and CO2 were found for the different soil-vegetation strata, but not for N2O. Soil CH4 consumption increased with soil gas diffusivity within similar strata supporting the hypothesis that CH4 consumption by soils is limited by the supply with atmospheric CH4. Methane consumption in the vegetation strata with dominant silty texture was higher at a given soil gas diffusivity than in the strata with sandy texture. The same pattern was observed for methanotrophic activity, indicating better habitats for methantrophs in silt. Methane consumption increased with soil respiration in all strata. Similarly, methanotrophic activity increased with soil respiration when the individual measurement locations were categorized into silt and sand based on the dominant soil texture, irrespective of the vegetation stratum. Thus, we suggest the rhizosphere and decomposing organic litter might represent or facilitate a preferred habitat for methanotrophic microbes, since rhizosphere and decomposing organic are the source of most of the soil respiration.
    Electronic ISSN: 1999-4907
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-02-05
    Description: More intensive removal of woody biomass for the bio-economy will disrupt litter and succession cycles. Especially at risk is the retention of fine and coarse woody debris (FWD and CWD), crucial factors in forest biodiversity and nutrient cycling. However, to what extent CWD affects soil functioning remains unknown, and is seldom considered. From 32 paired test–reference points in eight Fagus sylvatica (L.) stands throughout Southwest Germany, CWD significantly increased soil C/N ratios, base saturation, and possibly pH. CWD-induced changes in soil porosity, available water capacity, and total organic carbon depended on site and CWD characteristics. As such, CWD can be viewed as a “pedogenic hot-spot” of concentrated biogeochemical and -physical processes with outsized effects on soil functioning and development. CWD management for soil functioning should consider site and tree species specific volume thresholds, timed rotations, and spatial densities, but appropriate implementation requires further research to define best management practices. If successful, overall forest resilience as well as soil functioning and productivity can be improved.
    Electronic ISSN: 1999-4907
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...