ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-08-04
    Description: Remote Sensing, Vol. 10, Pages 1222: Systematic Comparison of Power Line Classification Methods from ALS and MLS Point Cloud Data Remote Sensing doi: 10.3390/rs10081222 Authors: Yanjun Wang Qi Chen Lin Liu Xiong Li Arun Kumar Sangaiah Kai Li Power lines classification is important for electric power management and geographical objects extraction using LiDAR (light detection and ranging) point cloud data. Many supervised classification approaches have been introduced for the extraction of features such as ground, trees, and buildings, and several studies have been conducted to evaluate the framework and performance of such supervised classification methods in power lines applications. However, these studies did not systematically investigate all of the relevant factors affecting the classification results, including the segmentation scale, feature selection, classifier variety, and scene complexity. In this study, we examined these factors systematically using airborne laser scanning and mobile laser scanning point cloud data. Our results indicated that random forest and neural network were highly suitable for power lines classification in forest, suburban, and urban areas in terms of the precision, recall, and quality rates of the classification results. In contrast to some previous studies, random forest yielded the best results, while Naïve Bayes was the worst classifier in most cases. Random forest was the more robust classifier with or without feature selection for various LiDAR point cloud data. Furthermore, the classification accuracies were directly related to the selection of the local neighborhood, classifier, and feature set. Finally, it was suggested that random forest should be considered in most cases for power line classification.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-04-20
    Description: Sustainability, Vol. 10, Pages 1258: 5G-Based Transmission Power Control Mechanism in Fog Computing for Internet of Things Devices Sustainability doi: 10.3390/su10041258 Authors: Ali Sodhro Sandeep Pirbhulal Arun Sangaiah Sonia Lohano Gul Sodhro Zongwei Luo Fog computing has become the revolutionary paradigm and one of the intelligent services of the 5th Generation (5G) emerging network, while Internet of Things (IoT) lies under its main umbrella. Enhancing and optimizing the quality of service (QoS) in Fog computing networks is one of the critical challenges of the present. In the meantime, strong links between the Fog, IoT devices and the supporting back-end servers is done through large scale cloud data centers and with the linear exponential trend of IoT devices and voluminous generated data. Fog computing is one of the vital and potential solutions for IoT in close connection with things and end users with less latency but due to high computational complexity, less storage capacity and more power drain in the cloud it is inappropriate choice. So, to remedy this issue, we propose transmission power control (TPC) based QoS optimization algorithm named (QoS-TPC) in the Fog computing. Besides, we propose the Fog-IoT-TPC-QoS architecture and establish the connection between TPC and Fog computing by considering static and dynamic conditions of wireless channel. Experimental results examine that proposed QoS-TPC optimizes the QoS in terms of maximum throughput, less delay, less jitter and minimum energy drain as compared to the conventional that is, ATPC, SKims and constant TPC methods.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-13
    Description: Symmetry, Vol. 10, Pages 213: Medical Diagnosis Based on Single-Valued Neutrosophic Probabilistic Rough Multisets over Two Universes Symmetry doi: 10.3390/sym10060213 Authors: Chao Zhang Deyu Li Said Broumi Arun Kumar Sangaiah In real-world diagnostic procedures, due to the limitation of human cognitive competence, a medical expert may not conveniently use some crisp numbers to express the diagnostic information, and plenty of research has indicated that generalized fuzzy numbers play a significant role in describing complex diagnostic information. To deal with medical diagnosis problems based on generalized fuzzy sets (FSs), the notion of single-valued neutrosophic multisets (SVNMs) is firstly used to express the diagnostic information in this article. Then the model of probabilistic rough sets (PRSs) over two universes is applied to analyze SVNMs, and the concepts of single-valued neutrosophic rough multisets (SVNRMs) over two universes and probabilistic rough single-valued neutrosophic multisets (PRSVNMs) over two universes are introduced. Based on SVNRMs over two universes and PRSVNMs over two universes, single-valued neutrosophic probabilistic rough multisets (SVNPRMs) over two universes are further established. Next, a three-way decisions model by virtue of SVNPRMs over two universes in the context of medical diagnosis is constructed. Finally, a practical case study along with a comparative study are carried out to reveal the accuracy and reliability of the constructed three-way decisions model.
    Electronic ISSN: 2073-8994
    Topics: Mathematics , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-04-28
    Description: Sustainability, Vol. 10, Pages 1366: A Hybrid Genetic Algorithm for Multi-Trip Green Capacitated Arc Routing Problem in the Scope of Urban Services Sustainability doi: 10.3390/su10051366 Authors: Erfan Babaee Tirkolaee Ali Asghar Rahmani Hosseinabadi Mehdi Soltani Arun Kumar Sangaiah Jin Wang Greenhouse gases (GHG) are the main reason for the global warming during the past decades. On the other hand, establishing a well-structured transportation system will yield to create least cost-pollution. This paper addresses a novel model for the multi-trip Green Capacitated Arc Routing Problem (G-CARP) with the aim of minimizing total cost including the cost of generation and emission of greenhouse gases, the cost of vehicle usage and routing cost. The cost of generation and emission of greenhouse gases is based on the calculation of the amount of carbon dioxide emitted from vehicles, which depends on such factors as the vehicle speed, weather conditions, load on the vehicle and traveled distance. The main applications of this problem are in municipalities for urban waste collection, road surface marking and so forth. Due to NP-hardness of the problem, a Hybrid Genetic Algorithm (HGA) is developed, wherein a heuristic and simulated annealing algorithm are applied to generate initial solutions and a Genetic Algorithm (GA) is then used to generate the best possible solution. The obtained numerical results indicate that the proposed algorithm could present desirable performance within a suitable computational run time. Finally, a sensitivity analysis is implemented on the maximum available time of the vehicles in order to determine the optimal policy.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-05-02
    Description: Symmetry, Vol. 10, Pages 138: Clickbait Convolutional Neural Network Symmetry doi: 10.3390/sym10050138 Authors: Hai-Tao Zheng Jin-Yuan Chen Xin Yao Arun Kumar Sangaiah Yong Jiang Cong-Zhi Zhao With the development of online advertisements, clickbait spread wider and wider. Clickbait dissatisfies users because the article content does not match their expectation. Thus, clickbait detection has attracted more and more attention recently. Traditional clickbait-detection methods rely on heavy feature engineering and fail to distinguish clickbait from normal headlines precisely because of the limited information in headlines. A convolutional neural network is useful for clickbait detection, since it utilizes pretrained Word2Vec to understand the headlines semantically, and employs different kernels to find various characteristics of the headlines. However, different types of articles tend to use different ways to draw users’ attention, and a pretrained Word2Vec model cannot distinguish these different ways. To address this issue, we propose a clickbait convolutional neural network (CBCNN) to consider not only the overall characteristics but also specific characteristics from different article types. Our experimental results show that our method outperforms traditional clickbait-detection algorithms and the TextCNN model in terms of precision, recall and accuracy.
    Electronic ISSN: 2073-8994
    Topics: Mathematics , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-05-18
    Description: Sustainability, Vol. 10, Pages 1611: Computation Offloading Algorithm for Arbitrarily Divisible Applications in Mobile Edge Computing Environments: An OCR Case Sustainability doi: 10.3390/su10051611 Authors: Bo Li Min He Wei Wu Arun Kumar Sangaiah Gwanggil Jeon Divisible applications are a class of tasks whose loads can be partitioned into some smaller fractions, and each part can be executed independently by a processor. A wide variety of divisible applications have been found in the area of parallel and distributed processing. This paper addresses the problem of how to partition and allocate divisible applications to available resources in mobile edge computing environments with the aim of minimizing the completion time of the applications. A theoretical model was proposed for partitioning an entire divisible application according to the load of the application and the capabilities of available resources, and the solutions were derived in closed form. Both simulations and real experiments were carried out to justify this model.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-03-21
    Description: Sensors, Vol. 18, Pages 923: An Energy-Efficient Algorithm for Wearable Electrocardiogram Signal Processing in Ubiquitous Healthcare Applications Sensors doi: 10.3390/s18030923 Authors: Ali Sodhro Arun Sangaiah Gul Sodhro Sonia Lohano Sandeep Pirbhulal Rapid progress and emerging trends in miniaturized medical devices have enabled the un-obtrusive monitoring of physiological signals and daily activities of everyone’s life in a prominent and pervasive manner. Due to the power-constrained nature of conventional wearable sensor devices during ubiquitous sensing (US), energy-efficiency has become one of the highly demanding and debatable issues in healthcare. This paper develops a single chip-based wearable wireless electrocardiogram (ECG) monitoring system by adopting analog front end (AFE) chip model ADS1292R from Texas Instruments. The developed chip collects real-time ECG data with two adopted channels for continuous monitoring of human heart activity. Then, these two channels and the AFE are built into a right leg drive right leg drive (RLD) driver circuit with lead-off detection and medical graded test signal. Human ECG data was collected at 60 beats per minute (BPM) to 120 BPM with 60 Hz noise and considered throughout the experimental set-up. Moreover, notch filter (cutoff frequency 60 Hz), high-pass filter (cutoff frequency 0.67 Hz), and low-pass filter (cutoff frequency 100 Hz) with cut-off frequencies of 60 Hz, 0.67 Hz, and 100 Hz, respectively, were designed with bilinear transformation for rectifying the power-line noise and artifacts while extracting real-time ECG signals. Finally, a transmission power control-based energy-efficient (ETPC) algorithm is proposed, implemented on the hardware and then compared with the several conventional TPC methods. Experimental results reveal that our developed chip collects real-time ECG data efficiently, and the proposed ETPC algorithm achieves higher energy savings of 35.5% with a slightly larger packet loss ratio (PLR) as compared to conventional TPC (e.g., constant TPC, Gao’s, and Xiao’s methods).
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-07-22
    Description: Symmetry, Vol. 9, Pages 126: Merger and Acquisition Target Selection Based on Interval Neutrosophic Multigranulation Rough Sets over Two Universes Symmetry doi: 10.3390/sym9070126 Authors: Chao Zhang Deyu Li Arun Sangaiah Said Broumi As a significant business activity, merger and acquisition (M&A) generally means transactions in which the ownership of companies, other business organizations or their operating units are transferred or combined. In a typical M&A procedure, M&A target selection is an important issue that tends to exert an increasingly significant impact on different business areas. Although some research works based on fuzzy methods have been explored on this issue, they can only deal with incomplete and uncertain information, but not inconsistent and indeterminate information that exists universally in the decision making process. Additionally, it is advantageous to solve M&A problems under the group decision making context. In order to handle these difficulties in M&A target selection background, we introduce a novel rough set model by combining interval neutrosophic sets (INSs) with multigranulation rough sets over two universes, called an interval neutrosophic (IN) multigranulation rough set over two universes. Then, we discuss the definition and some fundamental properties of the proposed model. Finally, we establish decision making rules and computing approaches for the proposed model in M&A target selection background, and the effectiveness of the decision making approach is demonstrated by an illustrative case analysis.
    Electronic ISSN: 2073-8994
    Topics: Mathematics , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...