ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI Publishing  (4)
Collection
Publisher
Years
  • 1
    Publication Date: 2011-01-14
    Description: This study explores the applicability of vehicle-based laser scanning (VLS) for biomass estimation at individual tree level, since biomass serves as an essential biophysical parameter indicating tree health. Previous work suggests that terrestrial laser scanning (TLS) has been primarily validated for biomass prediction, however, in subject to laborious relocation in practice. VLS, as an advanced mode of TLS with more flexible mobility and also high sampling density, can work as a new efficient technique for surveying single trees. Combined with the positive binds between the biomass and TLS-samplings during manual defoliation, this work aims to seek the relations between biomass and VLS-samplings, by correlating the VLS- and TLS-samplings within the same crowns during natural foliation. The resulting R2 values of the two correlations after normalization are larger than 0.88 and 0.61, respectively, and the associated root mean square errors (RMSEs) are less than 0.051 and 0.076. VLS, thus, can be validated for estimating biomass at the individual tree level, with the TLS-investigated data as a bridging reference.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-08-01
    Description: Remote Sensing, Vol. 9, Pages 785: Autonomous Collection of Forest Field Reference—The Outlook and a First Step with UAV Laser Scanning Remote Sensing doi: 10.3390/rs9080785 Authors: Anttoni Jaakkola Juha Hyyppä Xiaowei Yu Antero Kukko Harri Kaartinen Xinlian Liang Hannu Hyyppä Yunsheng Wang A compact solution for the accurate and automated collection of field data in forests has long been anticipated, and tremendous efforts have been made by applying various remote sensing technologies. The employment of advanced techniques, such as the smartphone-based relascope, terrestrial and mobile photogrammetry, and laser scanning, have led to steady progress, thus steering their applications to a practical stage. However, all recent strategies require human operation for data acquisition, either to place the instrument on site (e.g., terrestrial laser scanning, TLS) or to carry the instrument by an operator (e.g., personal laser scanning, PLS), which remained laborious and expensive. In this paper, a new concept of autonomous forest field investigation is proposed, which includes data collection above and inside the forest canopy by integrating an unmanned aircraft vehicle (UAV) with autonomous driving. As a first step towards realizing this concept, the feasibility of automated tree-level field measurements from a mini-UAV laser scanning system is evaluated. A “low-cost” Velodyne Puck LITE laser scanner is applied for the test. It is revealed that, with the above canopy flight data, the detection rate was 100% for isolated and dominant trees. The accuracy of direct measurements on the diameter at breast height (DBH) from the point cloud is between 5.5 and 6.8 cm due to the system and the methodological error propagation. The estimation of DBH from point cloud metrics, on the other hand, showed an accuracy of 2.6 cm, which is comparable to the accuracies obtained with terrestrial surveys using mobile laser scanning (MLS), TLS or photogrammetric point clouds. The estimation of basal area, stem volume and biomass of individual trees could be obtained with less than 20% RMSE, which is adequate for field reference measurements at tree level. Such results indicate that the concept of UAV laser scanning-based automated tree-level field reference collection can be feasible, even though the whole topic requires further research.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-08-04
    Description: Remote Sensing, Vol. 9, Pages 796: Comparison of the Selected State-Of-The-Art 3D Indoor Scanning and Point Cloud Generation Methods Remote Sensing doi: 10.3390/rs9080796 Authors: Ville Lehtola Harri Kaartinen Andreas Nüchter Risto Kaijaluoto Antero Kukko Paula Litkey Eija Honkavaara Tomi Rosnell Matti Vaaja Juho-Pekka Virtanen Matti Kurkela Aimad El Issaoui Lingli Zhu Anttoni Jaakkola Juha Hyyppä Accurate three-dimensional (3D) data from indoor spaces are of high importance for various applications in construction, indoor navigation and real estate management. Mobile scanning techniques are offering an efficient way to produce point clouds, but with a lower accuracy than the traditional terrestrial laser scanning (TLS). In this paper, we first tackle the problem of how the quality of a point cloud should be rigorously evaluated. Previous evaluations typically operate on some point cloud subset, using a manually-given length scale, which would perhaps describe the ranging precision or the properties of the environment. Instead, the metrics that we propose perform the quality evaluation to the full point cloud and over all of the length scales, revealing the method precision along with some possible problems related to the point clouds, such as outliers, over-completeness and misregistration. The proposed methods are used to evaluate the end product point clouds of some of the latest methods. In detail, point clouds are obtained from five commercial indoor mapping systems, Matterport, NavVis, Zebedee, Stencil and Leica Pegasus: Backpack, and three research prototypes, Aalto VILMA , FGI Slammer and the Würzburg backpack. These are compared against survey-grade TLS point clouds captured from three distinct test sites that each have different properties. Based on the presented experimental findings, we discuss the properties of the proposed metrics and the strengths and weaknesses of the above mapping systems and then suggest directions for future research.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-01-11
    Description: Microwave Radar is an attractive solution for forest mapping and inventories because microwave signals penetrates into the forest canopy and the backscattering signal can provide information regarding the whole forest structure. Satellite-borne and airborne imaging radars have been used in forest resources mapping for many decades. However, their accuracy with respect to the main forest inventory attributes substantially varies depending on the wavelength and techniques used in the estimation. Systems providing canopy backscatter as a function of canopy height are, practically speaking, missing. Therefore, there is a need for a radar system that would enable the scientific community to better understand the radar backscatter response from the forest canopy. Consequently, we undertook a research study to develop an unmanned aerial vehicle (UAV)-borne profiling (i.e., waveform) radar that could be used to improve the understanding of the radar backscatter response for forestry mapping and inventories. A frequency modulation continuous waveform (FMCW) profiling radar, termed FGI-Tomoradar, was introduced, designed and tested. One goal is the total weight of the whole system is less than 7 kg, including the radar system and georeferencing system, with centimetre-level positioning accuracy. Achieving this weight goal would enable the FGI-Tomoradar system to be installed on the Mini-UAV platform. The prototype system had all four linear polarization measuring capabilities, with bistatic configuration in Ku-band. In system performance tests in this study, FGI-Tomoradar was mounted on a manned helicopter together with a Riegl VQ-480-U laser scanner and tested in several flight campaigns performed at the Evo site, Finland. Airborne laser scanning data was simultaneously collected to investigate the differences and similarities of the outputs for the same target area for better understanding the penetration of the microwave signal into the forest canopy. Preliminary analysis confirmed that the profiling radar measures a clear signal from the canopy structure and has substantial potential to improve our understanding of radar forest mapping using the UAV platform.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...