ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-11-21
    Description: Modern molecular electronic transfer (MET) angular motion sensors combine high technical characteristics with low cost. Self-noise is one of the key characteristics which determine applications for MET sensors. However, until the present there has not been a model describing the sensor noise in the complete operating frequency range. The present work reports the results of an experimental study of the self-noise level of such sensors in the frequency range of 0.01–200 Hz. Based on the experimental data, a theoretical model is developed. According to the model, self-noise is conditioned by thermal hydrodynamic fluctuations of the operating fluid flow in the frequency range of 0.01–2 Hz. At the frequency range of 2–100 Hz, the noise power spectral density has a specific inversely proportional dependence of the power spectral density on the frequency that could be attributed to convective processes. In the high frequency range of 100–200 Hz, the noise is conditioned by the voltage noise of the electronics module input stage operational amplifiers and is heavily reliant to the sensor electrical impedance. The presented results allow a deeper understanding of the molecular electronic sensor noise nature to suggest the ways to reduce it.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-08-12
    Description: The results of a study of ultra-rapid (flash) sintering of oxide ceramic materials under microwave heating with high absorbed power per unit volume of material (10–500 W/cm3) are presented. Ceramic samples of various compositions—Al2O3; Y2O3; MgAl2O4; and Yb(LaO)2O3—were sintered using a 24 GHz gyrotron system to a density above 0.98–0.99 of the theoretical value in 0.5–5 min without isothermal hold. An analysis of the experimental data (microwave power; heating and cooling rates) along with microstructure characterization provided an insight into the mechanism of flash sintering. Flash sintering occurs when the processing conditions—including the temperature of the sample; the properties of thermal insulation; and the intensity of microwave radiation—facilitate the development of thermal runaway due to an Arrhenius-type dependency of the material’s effective conductivity on temperature. The proper control over the thermal runaway effect is provided by fast regulation of the microwave power. The elevated concentration of defects and impurities in the boundary regions of the grains leads to localized preferential absorption of microwave radiation and results in grain boundary softening/pre-melting. The rapid densification of the granular medium with a reduced viscosity of the grain boundary phase occurs via rotation and sliding of the grains which accommodate their shape due to fast diffusion mass transport through the (quasi-)liquid phase. The same mechanism based on a thermal runaway under volumetric heating can be relevant for the effect of flash sintering of various oxide ceramics under a dc/ac voltage applied to the sample.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-01-17
    Description: Sensors, Vol. 18, Pages 245: Angular Molecular–Electronic Sensor with Negative Magnetohydrodynamic Feedback Sensors doi: 10.3390/s18010245 Authors: Egor Egorov Vadim Agafonov Svetlana Avdyukhina Sergey Borisov A high-precision angular accelerometer based on molecular–electronic transfer (MET) technology with a high dynamic range and a low level of self-noise has been developed. Its difference from the analogues is in the use of liquid (electrolyte) as the inertial mass and the use of negative feedback based on the magnetohydrodynamic effect. This article reports on the development of the angular molecular–electronic accelerometer with a magnetohydrodynamic cell for the creation of negative feedback, and the optimization of electronics for the creation of a feedback signal. The main characteristics of the angular accelerometer, such as amplitude–frequency characteristics, self-noise and Allan variance were experimentally measured. The obtained output parameters were compared to its analogues and it showed perspectives for further development in this field.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-02-01
    Description: Remote Sensing, Vol. 10, Pages 209: Demonstration of Percent Tree Cover Mapping Using Landsat Analysis Ready Data (ARD) and Sensitivity with Respect to Landsat ARD Processing Level Remote Sensing doi: 10.3390/rs10020209 Authors: Alexey Egorov David Roy Hankui Zhang Matthew Hansen Anil Kommareddy The recently available Landsat Analysis Ready Data (ARD) are provided as top of atmosphere (TOA) and atmospherically corrected (surface) reflectance tiled products and are designed to make the U.S. Landsat archive for the United States straightforward to use. In this study, the utility of ARD for 30 m percent tree cover mapping is demonstrated and the impact of different ARD processing levels on mapping accuracy examined. Five years of Landsat 5 and 7 ARD over 12 tiles encompassing Washington State are considered using an established bagged regression tree methodology and training data derived from Goddard LiDAR Hyperspectral & Thermal Imager (G-LiHT) data. Sensitivity to the amount of training data is examined with increasing mapping accuracy observed as more training data are used. Four processing levels of ARD are considered independently and the mapped results are compared: (i) TOA ARD; (ii) surface ARD; (iii) bidirectional reflectance distribution function (BRDF) adjusted atmospherically corrected ARD; and (iv) weekly composited BRDF adjusted atmospherically corrected ARD. The atmospherically corrected ARD provide marginally the highest mapping accuracies, although accuracy differences are negligible among the four (≤0.07% RMSE) when modest amounts of training data are used. The TOA ARD provide the most accurate maps compared to the other input data when only small amounts of training data are used, and the least accurate maps otherwise. The results are illustrated and the implications discussed.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...