ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-09-14
    Description: Materials, Vol. 11, Pages 1713: Investigating Metal–Insulator Transition and Structural Phase Transformation in the (010)-VO2/(001)-YSZ Epitaxial Thin Films Materials doi: 10.3390/ma11091713 Authors: Yuanjun Yang Yingxue Yao Benjian Zhang Hui Lin Zhenlin Luo Chen Gao Cong Zhang Chaoyang Kang The VO2 thin films with sharp metal–insulator transition (MIT) were epitaxially grown on (001)-oriented Yttria-stabilized zirconia substrates (YSZ) using radio-frequency (RF) magnetron sputtering techniques. The MIT and structural phase transition (SPT) were comprehensively investigated under in situ temperature conditions. The amplitude of MIT is in the order of magnitude of 104, and critical temperature is 342 K during the heating cycle. It is interesting that both electron concentration and mobility are changed by two orders of magnitude across the MIT. This research is distinctively different from previous studies, which found that the electron concentration solely contributes to the amplitude of the MIT, although the electron mobility does not. Analysis of the SPT showed that the (010)-VO2/(001)-YSZ epitaxial thin film presents a special multi-domain structure, which is probably due to the symmetry matching and lattice mismatch between the VO2 and YSZ substrate. The VO2 film experiences the SPT from the M1 phase at low temperature to a rutile phase at a high temperature. Moreover, the SPT occurs at the same critical temperature as that of the MIT. This work may shed light on a new MIT behavior and may potentially pave the way for preparing high-quality VO2 thin films on cost-effective YSZ substrates for photoelectronic applications.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...