ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-11-04
    Description: The authors wish to add the following amendments and corrections to their paper published in IJERPH [1].[...]
    Print ISSN: 1661-7827
    Electronic ISSN: 1660-4601
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-07-19
    Description: Inhalation of potable water presents a potential route of exposure to opportunistic pathogens and hence warrants significant public health concern. This study used qPCR to detect opportunistic pathogens Legionella spp., L. pneumophila and MAC at multiple points along two potable water distribution pipelines. One used chlorine disinfection and the other chloramine disinfection. Samples were collected four times over the year to provide seasonal variation and the chlorine or chloramine residual was measured during collection. Legionella spp., L. pneumophila and MAC were detected in both distribution systems throughout the year and were all detected at a maximum concentration of 103 copies/mL in the chlorine disinfected system and 106, 103 and 104 copies/mL respectively in the chloramine disinfected system. The concentrations of these opportunistic pathogens were primarily controlled throughout the distribution network through the maintenance of disinfection residuals. At a dead-end and when the disinfection residual was not maintained significant (p 〈 0.05) increases in concentration were observed when compared to the concentration measured closest to the processing plant in the same pipeline and sampling period. Total coliforms were not present in any water sample collected. This study demonstrates the ability of Legionella spp., L. pneumophila and MAC to survive the potable water disinfection process and highlights the need for greater measures to control these organisms along the distribution pipeline and at point of use.
    Print ISSN: 1661-7827
    Electronic ISSN: 1660-4601
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-02
    Description: IJERPH, Vol. 15, Pages 1150: Quantitative Microbial Risk Assessment and Opportunist Waterborne Infections–Are There Too Many Gaps to Fill? International Journal of Environmental Research and Public Health doi: 10.3390/ijerph15061150 Authors: Richard Bentham Harriet Whiley Quantitative microbial risk assessment (QMRA) is a relatively new approach in identifying health risks associated with the ubiquitous presence of pathogens and opportunists in the human environment. The methodology builds on experimental and meta-analytical data to identify measurable factors that contribute to, and can quantify, the likely extent of disease given a particular exposure. Early modelling was particularly focused on food-borne disease, and subsequently water-borne disease, with the emphasis focused on ingestion and its role in enteric disease. More recently, there has been a focus on translating these principles to opportunist waterborne infections (OWI) with primary focus on Legionella spp. Whereas dose and susceptibility are well documented via the ingestion route of exposure there is considerably less certainty regarding both factors when understanding Legionella spp. and other OWI. Many OWI can arise through numerous routes of transmission with greatly differing disease presentations. Routes of Legionella spp. infection do not include ingestion, but rather aspiration and inhalation of contaminated water are the routes of exposure. The susceptible population for OWI is a vulnerable sub-set of the population unlike those associated with enteric disease pathogens. These variabilities in dose, exposure and susceptibility call in to question whether QMRA can be a useful tool in managing risks associated with OWI. Consideration of Legionella spp. as a well-documented subject of research calls into question whether QMRA of OWI is likely to be a useful tool in developing risk management strategies.
    Print ISSN: 1661-7827
    Electronic ISSN: 1660-4601
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-11-09
    Description: Campylobacteriosis is infection caused by the bacteria Campylobacter spp. and is considered a major public health concern. Campylobacter spp. have been identified as one of the most common causative agents of bacterial gastroenteritis. They are typically considered a foodborne pathogen and have been shown to colonise the intestinal mucosa of all food-producing animals. Much emphasis has been placed on controlling the foodborne pathway of exposure, particularly within the poultry industry, however, other environmental sources have been identified as important contributors to human infection. This paper aims to review the current literature on the sources of human exposure to Campylobacter spp. and will cover contaminated poultry, red meat, unpasteurised milk, unwashed fruit and vegetables, compost, wild bird faeces, sewage, surface water, ground water and drinking water. A comparison of current Campylobacter spp. identification methods from environmental samples is also presented. The review of literature suggests that there are multiple and diverse sources for Campylobacter infection. Many environmental sources result in direct human exposure but also in contamination of the food processing industry. This review provides useful information for risk assessment.
    Print ISSN: 1661-7827
    Electronic ISSN: 1660-4601
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...