ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-08-06
    Description: During the last few years, the issues of energy efficiency and energy saving have dominated the buildings research field. New constructions are based on efficient design and, because of this, the real challenge is to retrofit existing buildings. Italian standards impose thermal transmittance limits for opaque and transparent surfaces, according to the climatic area. In order to understand buildings’ energy behavior, an accurate analysis, carried out by employing advanced calculation codes and instrumental diagnosis—provided by the use of heat flow meter, surface temperature probes and thermal imaging camera—is needed. In this paper, a structure built in the 50 s has been analyzed, by means of a measurement campaign, to investigate the building’s characteristics and its vulnerability. Finally, some retrofit hypotheses have been evaluated by means of a well-known dynamic code. All investments have to be analyzed under a financial point of view, considering materials and installation costs. For this reason, the payback time has been calculated in order to understand how quickly the energy upgrading can be repaid.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-08-06
    Description: An accurate assessment of a building’s wall performance, defined through the thermal transmittance, is essential to compute the annual energy consumption. Analyzing opaque surfaces, the heat transfer across walls can be modeled by an electro-thermal analogy, based on resistors series, crossed by a one-dimensional heat flow. This analogy is well established and it refers to stratigraphy composed of homogeneous materials. When dealing with inhomogeneous materials, possibly including hollow bricks, the wall’s thermal transmittance is evaluated by means of an effective conductance. However, in order to verify the theoretical models effectiveness, a comparison with in situ measurements is needed. In this paper, three building walls characterized by different stratigraphy have been analyzed; by employing a heat flow meter investigation. Measurements results and estimated thermal transmittance values—calculated applying the standard UNI EN ISO 6946—have been compared.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-10-17
    Description: The increasing attention paid to the environment has led to a reduction in the emissions from wastewater treatment plants (WWTPs). Moreover, the increasing interest in the greenhouse gas (GHG) emissions from WWTPs suggests that we reconsider the traditional tools used for designing and managing WWTPs. Indeed, nitrous oxide, carbon dioxide and methane can be emitted from wastewater treatment, significantly contributing to the greenhouse gas (GHG) footprint. The reduction of energy consumption as well as GHG emission are of particular concern for large WWTPs which treat the majority of wastewater in terms of both volume and pollution load. Nowadays, there is an increasing need to develop new tools that include additional performance indicators related to GHG emissions and energy consumption as well as traditional effluent quality parameters. Energy consumption, in fact, can be considered as an indirect source of GHGs. This paper presents the development of an ongoing research project aiming at setting-up an innovative mathematical model platform for the design and management of WWTPs. The final goal of the project by means of this platform is to minimize the environmental impact of WWTPs through their optimization in terms of energy consumptions and emissions, which can be regarded as discharged pollutants, sludge and GHGs.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-01-23
    Description: Sound attenuation with conventional acoustic materials is subject to the mass law and requires massive and bulky structures at low frequencies. A possible alternative solution is provided by the use of metamaterials, which are artificial materials properly engineered to obtain properties and characteristics that it is not possible to find in natural materials. Theory and applications of metamaterials, already consolidated in electromagnetism, can be extended to acoustics; in particular, they can be applied to improve the properties of acoustical panels. The design of acoustic metasurfaces that could effectively control transmitted sound in unconventional ways appears a significant subject to be investigated, given its wide-ranging possible applications. In this contribution, we investigate the application of a metasurface-inspired technique to achieve the acoustical insulation of an environment. The designed surface has subwavelength thickness and structuring and could be realized with cheap, lightweight and sustainable materials. We present a few examples of such structures and analyze their acoustical behavior by means of full-wave simulations.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-07-17
    Description: This contribution aims at investigating the possibility to cloak a spherical object from an acoustic wave by applying the scattering cancellation approach. In electromagnetism, the scattering problem is treated using the Mie expansion technique, through which the scattered field by a spherical object can be represented as a superposition of TE and TM spherical harmonics. It is possible to extend this concept to the acoustic field by defining an analogous approach; the pressure field, generated by an elastic wave impinging on a spherical object, can be expressed applying the Mie expansion technique, as well. In acoustics, to achieve scattering suppression at a given frequency, the constitutive parameters to control are density and compressibility. By varying these parameter values, it is possible to define an engineered material with anomalous properties, which cannot be found in nature, able to reduce the scattering cross-section (SCS) from a spherical object. We propose a study about the effectiveness of the SCS reduction from an elastic sphere coated with a properly-designed acoustic metamaterial. The sensitivity of the SCS to parameter variations is analyzed for different coating thicknesses and sphere dimensions. Our analysis is supported by both the analytical modelling of the structure and numerical simulations.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-09-07
    Description: Energies, Vol. 11, Pages 2353: Correction: Gori, V.; Biddulph, P.; Elwell, C.A. A Bayesian Dynamic Method to Estimate the Thermophysical Properties of Building Elements in All Seasons, Orientations and with Reduced Error. Energies 2018, 11, 802 Energies doi: 10.3390/en11092353 Authors: Virginia Gori Phillip Biddulph Clifford A. Elwell The authors wish to make the following corrections to their paper [1]: [...]
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-09-19
    Description: Water, Vol. 10, Pages 1276: Diurnal and Semidiurnal Cyclicity of Radon (222Rn) in Groundwater, Giardino Spring, Central Apennines, Italy Water doi: 10.3390/w10091276 Authors: Marino Domenico Barberio Francesca Gori Maurizio Barbieri Andrea Billi Roberto Devoti Carlo Doglioni Marco Petitta Federica Riguzzi Sergio Rusi Understanding natural variations of Rn (222Rn) concentrations is the fundamental prerequisite of using this radioactive gas as a tracer, or even precursor, of natural processes, including earthquakes. In this work, Rn concentrations in groundwater were continuously measured over a seven-month period, during 2017, in the Giardino Spring, Italy, together with groundwater levels in a nearby well installed into a fractured regional aquifer. Data were processed to reduce noise, and then analyzed to produce the Fourier spectra of Rn concentrations and groundwater levels. These spectra were compared with the spectrum of tidal forces. Results showed that diurnal and semidiurnal cycles of Rn concentrations, and filtered oscillations of groundwater levels, in the nearby well, are correlated with solar and luni-solar components of tidal forces, and suggested no correlation with the principal lunar components. Therefore, influencing factors linked to solar cycles, such as daily oscillations of temperature and atmospheric pressure, and related rock deformations, may have played a role in Rn concentrations and groundwater levels. An open question remains regarding the correlation, which is documented elsewhere, of Rn concentrations and groundwater levels with the lunar components of the solid Earth tides.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-03-31
    Description: Energies, Vol. 11, Pages 802: A Bayesian Dynamic Method to Estimate the Thermophysical Properties of Building Elements in All Seasons, Orientations and with Reduced Error Energies doi: 10.3390/en11040802 Authors: Virginia Gori Phillip Biddulph Clifford Elwell The performance gap between the expected and actual energy performance of buildings and elements has stimulated interest in in-situ measurements. Most research has employed quasi-static analysis methods that estimate heat loss metrics such as U-values, without taking advantage of the rich time series data that is often recorded. This paper presents a dynamic Bayesian-based method to estimate the thermophysical properties of building elements from in-situ measurements. The analysis includes Markov chain Monte Carlo (MCMC) estimation, priors, uncertainty analysis, and model comparison to select the most appropriate model. Data from two case study dwellings is used to illustrate model performance; U-value estimates from the dynamic and static methods are within error estimates, with the dynamic model generally requiring much shorter time series than the static model. The dynamic model produced robust results at all times of year, including when the average indoor-to-outdoor temperature difference was low, when external temperatures had large daily variation, and measurements were subjected to direct solar radiation. Further, the probability distributions of parameters may provide insights into the thermal performance of elements. Dynamic methods such as that presented herein may enable wider characterisation of the performance of building elements as built, supporting work to reduce the performance gap.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-01-01
    Description: Deep-water ecosystems are characterized by relatively low carbonate concentration values and, due to ocean acidification (OA), these habitats might be among the first to be exposed to undersaturated conditions in the forthcoming years. However, until now, very few studies have been conducted to test how cold-water coral (CWC) species react to such changes in the seawater chemistry. The present work aims to investigate the mid-term effect of decreased pH on calcification of the two branching CWC species most widely distributed in the Mediterranean, Lophelia pertusa and Madrepora oculata. No significant effects were observed in the skeletal growth rate, microdensity and porosity of both species after 6 months of exposure. However, while the calcification rate of M. oculata was similar for all colony fragments, a heterogeneous skeletal growth pattern was observed in L. pertusa, the younger nubbins showing higher growth rates than the older ones. A higher energy demand is expected in these young, fast-growing fragments and, therefore, a reduction in calcification might be noticed earlier during long-term exposure to acidified conditions.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-09-06
    Description: This paper analyzes the impact of a change in the thermal insulating material on both the energy and environmental performance of a building, evaluated through two different green building assessment methods: Leadership in Energy and Environmental Design (LEED) and Istituto per l’innovazione e Trasparenza degli Appalti e la Compatibilità Ambientale (ITACA). LEED is one of the most qualified rating systems at an international level; it assesses building sustainability thanks to a point-based system where credits are divided into six different categories. One of these is fully related to building materials. The ITACA procedure derives from the international evaluation system Sustainable Building Tool (SBTool), modified according to the Italian context. In the region of Umbria, ITACA certification is composed of 20 technical sheets, which are classified into five macro-areas. The analysis was developed on a residential building located in the central Italy. It was built taking into account the principles of sustainability as far as both structural and technical solutions are concerned. In order to evaluate the influence of thermal insulating material, different configurations of the envelope were considered, replacing the original material (glass wool) with a synthetic one (expanded polystyrene, EPS) and two natural materials (wood fiber and kenaf). The study aims to highlight how the materials characteristics can affect building energy and environmental performance and to point out the different approaches of the analyzed protocols.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...