ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: Poyang Lake is the largest wintering habitat for migratory birds in Asia. In the last decade, the lake has experienced an early-occurring and prolonged dry season that has deteriorated the lake’s ecological status. To tackle this issue, the Chinese government has proposed the construction of the Poyang Lake Hydraulic Project (PLHP) to regulate water flow to the lake. However, its impact on migratory bird habitats is unknown. In this study, we simulated the habitat suitability for migratory birds in Poyang Lake during wet and dry years, with and without the presence/operation of the hydraulic project. A two-dimensional hydrodynamic model was used to simulate the water conditions for each case. Matter-element theory, 3S technology and ecological knowledge were combined to develop a matter-element-based habitat suitability model in a geographic information system (GIS)-based platform. We assessed and compared the habitat suitability in four scenarios: (1) Wet year without the hydraulic project, (2) wet year with the hydraulic project, (3) dry year without the hydraulic project, and (4) dry year with the hydraulic project. The results showed that the operation of the hydraulic project can effectively alleviate the water shortage issue in the wetland and increase the area of habitats suitable for migratory birds in typical dry years. However, it can reduce the area of suitable habitats in the northern provincial nature reserve of the lake. In addition, a reasonable management of the lake’s fishing activities can also increase habitat suitability and promote balanced patterns between human activities and migratory bird habitats.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018
    Description: Because of multiple manufacturing phases or operating conditions, a great many industrial processes work with multiple modes. In addition, it is inevitable that some measurements of industrial variables obtained through hardware sensors are incorrectly observed, recorded or imported into databases, resulting in the dataset available for statistic analysis being contaminated by outliers. Unfortunately, these outliers are difficult to recognize and remove completely. These process characteristics and dataset imperfections impose challenges on developing high-accuracy soft sensors. To resolve this problem, the Student’s-t mixture regression (SMR) is proposed to develop a robust soft sensor for multimode industrial processes. In the SMR, for each mixing component, the Student’s-t distribution is used instead of the Gaussian distribution to model secondary variables, and the functional relationship between secondary and primary variables is explicitly considered. Based on the model structure of the SMR, a computationally efficient parameter-learning algorithm is also developed for SMR. Results conducted on two cases including a numerical example and a real-life industrial process demonstrate the effectiveness and feasibility of the proposed approach.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: The Tibetan Plateau is one of the most vulnerable areas to extreme precipitation. In recent decades, water cycles have accelerated, and the temporal and spatial characteristics of extreme precipitation have undergone dramatic changes across the Tibetan Plateau, especially in its various ecosystems. However, there are few studies that considered the variation of extreme precipitation in various ecosystems, and the impact of El Niño-Southern Oscillation (ENSO), and few researchers have made a quantitative analysis between them. In this study, we analyzed the spatial and temporal pattern of 10 extreme precipitation indices across the Tibetan Plateau (including its four main ecosystems: Forest, alpine meadow, alpine steppe, and desert steppe) based on daily precipitation from 76 meteorological stations over the past 30 years. We used the linear least squares method and Pearson correlation coefficient to examine variation magnitudes of 10 extreme precipitation indices and correlation. Temporal pattern indicated that consecutive wet days (CWD) had a slightly decreasing trend (slope = −0.006), consecutive dry days (CDD), simple daily intensity (SDII), and extreme wet day precipitation (R99) displayed significant increasing trends, while the trends of other indices were not significant. For spatial patterns, the increasing trends of nine extreme precipitation indices (excluding CDD) occurred in the southwestern, middle and northern regions of the Tibetan Plateau; decreasing trends were distributed in the southeastern region, while the spatial pattern of CDD showed the opposite distribution. As to the four different ecosystems, the number of moderate precipitation days (R10mm), number of heavy precipitation days (R20mm), wet day precipitation (PRCPTOT), and very wet day precipitation (R95) in forest ecosystems showed decreasing trends, but CDD exhibited a significant increasing trend (slope = 0.625, P 〈 0.05). In the other three ecosystems, all extreme precipitation indices generally exhibited increasing trends, except for CWD in alpine meadow (slope = −0.001) and desert steppe (slope = −0.005). Furthermore, the crossover wavelet transform indicated that the ENSO had a 4-year resonance cycle with R95, SDII, R20mm, and CWD. These results provided additional evidence that ENSO play an important remote driver for extreme precipitation variation in the Tibetan Plateau.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019
    Description: Ground surface characteristics (i.e., topography and landscape patterns) are important factors in geographic dynamics. Thus, the complexity of ground surface is a valuable indicator for designing multiscale modeling concerning the balance between computational costs and the accuracy of simulations regarding the resolution of modeling. This study proposes the concept of comprehensive surface complexity (CSC) to quantity the degree of complexity of ground by integrating the topographic complexity indices and landscape indices representing the land use and land cover (LULC) complexity. Focusing on the meteorological process modeling, this paper computes the CSC by constructing a multiple regression model between the accuracy of meteorological simulation and the surface complexity of topography and LULC. Regarding the five widely studied areas of China, this paper shows the distribution of CSC and analyzes the window size effect. The comparison among the study areas shows that the CSC is highest for the Chuanyu region and lowest for the Wuhan region. To investigate the application of CSC in meteorological modeling, taking the Jingjinji region for instance, we conducted Weather Research and Forecasting Model (WRF) modeling and analyzed the relationship between CSC and the mean absolute error (MAE) of the temperature at 2 meters. The results showed that the MAE is higher over the northern and southern areas and lower over the central part of the study area, which is generally positively related to the value of CSC. Thus, it is feasible to conclude that CSC is helpful to indicate meteorological modeling capacity and identify those areas where finer scale modeling is preferable.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019
    Description: The distinguishable sediment concentration, density, and transport mechanisms characterize the different magnitudes of destruction due to debris flow process (DFP). Identifying the dominating DFP type within a catchment is of paramount importance in determining the efficient delineation and mitigation strategies. However, few studies have focused on the identification of the DFP types (including water-flood, debris-flood, and debris-flow) based on machine learning methods. Therefore, while taking Beijing as the study area, this paper aims to establish an integrated framework for the identification of the DFP types, which consists of an indicator calculation system, imbalance dataset learning (borderline-Synthetic Minority Oversampling Technique (borderline-SMOTE)), and classification model selection (Random Forest (RF), AdaBoost, Gradient Boosting (GBDT)). The classification accuracies of the models were compared and the significance of parameters was then assessed. The results indicate that Random Forest has the highest accuracy (0.752), together with the highest area under the receiver operating characteristic curve (AUROC = 0.73), and the lowest root-mean-square error (RMSE = 0.544). This study confirms that the catchment shape and the relief gradient features benefit the identification of the DFP types. Whereby, the roughness index (RI) and the Relief ratio (Rr) can be used to effectively describe the DFP types. The spatial distribution of the DFP types is analyzed in this paper to provide a reference for diverse practical measures, which are suitable for the particularity of highly destructive catchments.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...