ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018
    Description: With the significant progress of urbanization, cities and towns are suffering from air pollution, heat island effects, and other environmental problems. Urban vegetation, especially trees, plays a significant role in solving these ecological problems. To maximize services provided by vegetation, urban tree species should be properly selected and optimally arranged. Therefore, accurate classification of tree species in urban environments has become a major issue. In this paper, we reviewed the potential of light detection and ranging (LiDAR) data to improve the accuracy of urban tree species classification. In detail, we reviewed the studies using LiDAR data in urban tree species mapping, especially studies where LiDAR data was fused with optical imagery, through classification accuracy comparison, general workflow extraction, and discussion and summarizing of the specific contribution of LiDAR. It is concluded that combining LiDAR data in urban tree species identification could achieve better classification accuracy than using either dataset individually, and that such improvements are mainly due to finer segmentation, shadowing effect reduction, and refinement of classification rules based on LiDAR. Furthermore, some suggestions are given to improve the classification accuracy on a finer and larger species level, while also aiming to maintain classification costs.
    Electronic ISSN: 1999-4907
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018
    Description: In this study, a static tensile test of secondary co-cure reinforcement (SCR) of laminates revealed the damage and fracture locations in the respective structure. Test results indicated that adhesive debonding was the primary cause of structural failure. Finite element modeling (FEM) performed on the large opening laminate and strengthening structure consisted of simulations of the axial tension experiment, damage assessment, and the final load estimate. It was observed that the tensile strength of SCR was increased by 10.81% in comparison with the unrepaired structure. The results of FEM indicated that the initiation and propagation of damage, and final failure, were located in the layer of reinforcing section which was bonded to the adhesive layer, proving that the performance of the adhesive layer was the dominating factor with regard to the reinforced structure and that the thickness of the reinforcing section could be reduced to lessen the weight.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: Knowledge of both state (e.g., soil moisture) and flux (e.g., actual evapotranspiration (ETa) and groundwater recharge (GR)) hydrological variables across vadose zones is critical for understanding ecohydrological and land-surface processes. In this study, a one-dimensional process-based vadose zone model with generated soil hydraulic parameters was utilized to simulate soil moisture, ETa, and GR. Daily hydrometeorological data were obtained from different climate zones to drive the vadose zone model. On the basis of the field phenomenon of soil moisture temporal stability, reasonable soil moisture spatiotemporal structures were reproduced from the model. The modeling results further showed that the dependence of ETa and GR on soil hydraulic properties varied considerably with climatic conditions. In particular, the controls of soil hydraulic properties on ETa and GR greatly weakened at the site with an arid climate. In contrast, the distribution of mean relative difference (MRD) of soil moisture was still significantly correlated with soil hydraulic properties (most notably residual soil moisture content) under arid climatic conditions. As such, the correlations of MRD with ETa and GR differed across different climate regimes. In addition, the simulation results revealed that samples with average moisture conditions did not necessarily produce average values of ETa and GR (and vice versa), especially under wet climatic conditions. The loose connection between average state and flux hydrological variables across vadose zones is partly because of the high non-linearity of subsurface processes, which leads to the complex interactions of soil moisture, ETa, and GR with soil hydraulic properties. This study underscores the importance of using soil moisture information from multiple sites for inferring areal average values of ETa and GR, even with the knowledge of representative sites that can be used to monitor areal average moisture conditions.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...