ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018
    Description: The operational Moderate Resolution Imaging Spectroradiometer (MODIS) Aerosol Products (APs) have provided long-term and wide-spatial-coverage aerosol optical properties across the globe, such as aerosol optical depth (AOD). However, the performance of the latest Collection 6.1 (C6.1) of MODIS APs is still unclear over urban areas that feature complex surface characteristics and aerosol models. The aim of this study was to validate and compare the performance of the MODIS C6.1 and C6 APs (MxD04, x = O for Terra, x = Y for Aqua) over Beijing, China. The results of the Dark Target (DT) and Deep Blue (DB) algorithms were validated against Aerosol Robotic Network (AERONET) ground-based observations at local sites. The retrieval uncertainties and accuracies were evaluated using the expected error (EE: ±0.05 + 15%) and the root-mean-square error (RMSE). It was found that the MODIS C6.1 DT products performed better than the C6 DT products, with a greater percentage (by about 13%–14%) of the retrievals falling within the EE. However, the DT retrievals collected from two collections were significantly overestimated in the Beijing region, with more than 64% and 48% of the samples falling above the EE for the Terra and Aqua satellites, respectively. The MODIS C6.1 DB products performed similarly to the C6 DB products, with 70%–73% of the retrievals matching within the EE and estimation uncertainties. Moreover, the DB algorithm performed much better than DT algorithm over urban areas, especially in winter where abundant missing pixels were found in DT products. To investigate the effects of factors on AOD retrievals, the variability in the assumed surface reflectance and the main optical properties applied in DT and DB algorithms are also analyzed.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: Few of the classical field studies of streamflow generation in headwater watersheds have been conducted in catchments with thin soils and deeply weathered crystalline silicate bedrock. As such, the role of the (potentially very large) storage capacity of weathered, fractured rock in baseflow and storm event discharge remains poorly characterized. Here we present a study of streamflow generation in an upland semi-humid watershed (Xitaizi Experimental Watershed, XEW, 4.22 km2) dominated by baseflow feeding one of the main water supply reservoirs for the city of Beijing, China. This catchment is relatively dry (625 mm/yr precipitation, 480 mm/yr Evapotranspiration), but has strongly seasonal precipitation that varies in phase with strongly seasonal potential evapotranspiration. The catchment was instrumented with four weather stations and precipitation collectors, 11 deep wells drilled into the bedrock along three hillslopes, and additional soil moisture sensors and water samplers along one hillslope. In six storm events over two years, samples of rainfall, soil water (10–80 cm depth), groundwater, and stream water were collected with high frequency and analyzed for stable water isotopes (δ18O and δ2H). Tracer-based hydrograph separation showed that event water (precipitation) makes up the majority of the hydrograph peak above baseflow, and pre-event water contributions (on average) simply represent the steady release of groundwater. The quantity of event water corresponded to a very small effective contributing area (〈0.2% of the catchment) that nevertheless showed a clear dependence on catchment wetness as measured by the streamflow. The streamflow itself was isotopically identical to the deep groundwater in wells. This suggests that the fractured, weathered, bedrock system dominates the production of streamflow in this catchment.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: The flood propagation at a confluence of channels exhibits a unique routing pattern, while there are few studies on the routing of dam-break flow in confluent channels. In this study, we conducted physical experiments and a numerical simulation to investigate the influence of different confluence angles on the routing of a dam-break flood. Experiments were carried out in smooth, transparent, rectangular prismatic channels to study the dam-break flow under four different confluence angles. The flow velocity was measured using an image processing technique, and the surface flow field was effectively captured by synchronously recording the particle motion images. Based on the variation of the water level and flow discharge, as the confluence angle increased, the retardation and abatement effects on the flood increased. Specifically, the flood arrival time was delayed by approximately 0.91% to 21.18%, and the peak flood discharge was reduced by approximately 9.05% to 58.36%. Combined with the surface flow field at the confluence and in the downstream sections, as the confluence angle increased, the impact points at the confluence and in the downstream straight sections moved upward, and the impact range was reduced. Combined with the pressure variation pattern, the routing of dam-break flow in the confluent channels experienced a process of impact-reflection-return-attenuation.
    Print ISSN: 1661-7827
    Electronic ISSN: 1660-4601
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...