ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018
    Description: A basic pattern in the body plan architecture of many animals, plants and some molecular and cellular systems is five-part units. This pattern has been understood as a result of genetic blueprints in development and as a widely conserved evolutionary character. Despite some efforts, a definitive explanation of the abundance of pentagonal symmetry at so many levels of complexity is still missing. Based on both, a computational platform and a statistical spatial organization argument, we show that five-fold morphology is substantially different from other abundant symmetries like three-fold, four-fold and six-fold symmetries in terms of spatial interacting elements. We develop a measuring system to determine levels of spatial organization in 2D polygons (homogeneous or heterogeneous partition of defined areas) based on principles of regularity in a morphospace. We found that spatial organization of five-fold symmetry is statistically higher than all other symmetries studied here (3 to 10-fold symmetries) in terms of spatial homogeneity. The significance of our findings is based on the statistical constancy of geometrical constraints derived from spatial organization of shapes, beyond the material or complexity level of the many different systems where pentagonal symmetry occurs.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: Bayesian statistical inference under unknown or hard to asses likelihood functions is a very challenging task. Currently, approximate Bayesian computation (ABC) techniques have emerged as a widely used set of likelihood-free methods. A vast number of ABC-based approaches have appeared in the literature; however, they all share a hard dependence on free parameters selection, demanding expensive tuning procedures. In this paper, we introduce an automatic kernel learning-based ABC approach, termed AKL-ABC, to automatically compute posterior estimations from a weighting-based inference. To reach this goal, we propose a kernel learning stage to code similarities between simulation and parameter spaces using a centered kernel alignment (CKA) that is automated via an Information theoretic learning approach. Besides, a local neighborhood selection (LNS) algorithm is used to highlight local dependencies over simulations relying on graph theory. Attained results on synthetic and real-world datasets show our approach is a quite competitive method compared to other non-automatic state-of-the-art ABC techniques.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...