ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: Rainwater interacts with tree canopies in forest ecosystems, which greatly influence its quality. However, little information is available regarding how tree canopies influence dissolved organic matter (DOM) in rainwater. To examine this, we collected bulk deposition (rainfall) and throughfall in a conifer (Chamaecyparis obtusa) plantation, western Japan, during a rain event, and analyzed their DOM molecular compositions using ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry. The dissolved organic carbon flux and the number of DOM molecular species detected were approximately seven times and three times higher in throughfall than in rainfall, respectively. We found that the average proportion of molecular species shared between five sample replicates was larger in throughfall (69%) than in rainfall (50%). Nonmetric multidimensional scaling revealed that the molecular species were significantly differentiated between throughfall and rainfall, and the dissimilarity among the replicates was much smaller in throughfall. This indicates that the quality of DOM in rainwater became spatially homogeneous due to contact with tree canopies. The number of lignin-like molecules was larger than those of any other biomolecular compounds in throughfall and seven times larger than in rainfall, suggesting that many of plant-derived DOM molecules were dissolved into rainwater.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018
    Description: Pork is the most commonly consumed meat in Vietnam, and Salmonella enterica is a common contaminant. This study aimed to assess potential S. enterica cross-contamination between raw and cooked pork in Vietnamese households. Different scenarios for cross-contamination were constructed based on a household survey of pork handling practices (416 households). Overall, 71% of people used the same knife and cutting board for both raw and cooked pork; however, all washed their hands and utensils between handling raw and cooked pork. The different scenarios were experimentally tested. First, S. enterica was inoculated on raw pork and surfaces (hands, knives and cutting boards); next, water used for washing and pork were sampled to identify the presence and concentration of S. enterica during different scenarios of food preparation. Bootstrapping techniques were applied to simulate transfer rates of S. enterica cross-contamination. No cross-contamination to cooked pork was observed in the scenario of using the same hands with new cutting boards and knives. The probability of re-contamination in the scenarios involving re-using the cutting board after washing was significantly higher compared to the scenarios which used a new cutting board. Stochastic simulation found a high risk of cross-contamination from raw to cooked pork when the same hands, knives and cutting boards were used for handling raw and cooked pork (78%); when the same cutting board but a different knife was used, cross-contamination was still high (67%). Cross-contamination between was not seen when different cutting boards and knives were used for cutting raw and cooked pork. This study provided an insight into cross-contamination of S. enterica, given common food handling practices in Vietnamese households and can be used for risk assessment of pork consumption.
    Print ISSN: 1661-7827
    Electronic ISSN: 1660-4601
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: Research highlights: Estimates of fine root production using ingrowth cores are strongly influenced by decomposed roots in the cores during the incubation period and should be accounted for when calculating fine root production (FRP). Background and Objectives: The ingrowth core method is often used to estimate fine root production; however, decomposed roots are often overlooked in estimates of FRP. Uncertainty remains on how long ingrowth cores should be installed and how FRP should be calculated in tropical forests. Here, we aimed to estimate FRP by taking decomposed fine roots into consideration. Specifically, we compared FRP estimates at different sampling intervals and using different calculation methods in a tropical rainforest in Borneo. Materials and Methods: Ingrowth cores were installed with root litter bags and collected after 3, 6, 12 and 24 months. FRP was estimated based on (1) the difference in biomass at different sampling times (differential method) and (2) sampled biomass at just one sampling time (simple method). Results: Using the differential method, FRP was estimated at 447.4 ± 67.4 g m−2 year−1 after 12 months, with decomposed fine roots accounting for 25% of FRP. Using the simple method, FRP was slightly higher than that in the differential method after 12 months (516.3 ± 45.0 g m−2 year−1). FRP estimates for both calculation methods using data obtained in the first half of the year were much higher than those using data after 12-months of installation, because of the rapid increase in fine root biomass and necromass after installation. Conclusions: Therefore, FRP estimates vary with the timing of sampling, calculation method and presence of decomposed roots. Overall, the ratio of net primary production (NPP) of fine roots to total NPP in this study was higher than that previously reported in the Neotropics, indicating high belowground carbon allocation in this forest.
    Electronic ISSN: 1999-4907
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...