ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018
    Description: In recent studies on the recognition of graphitized gouges within the principal slip zone (PSZ) of the Longmenshan fault in China, we proposed that the presence of graphite might be evidence of fault slip. Here, we characterized the clay- and carbonaceous-rich gouges of the active fault zone of the Longmenshan fault belt using samples collected from the trench at Jiulong, which was deformed during the 2008 MW-7.9 Wenchuan earthquake, to determine if graphite is present and study both the processes influencing fault behavior and the associated faulting mechanism. Mineralogical and geochemical analyses of the Jiulong trench sample show the presence of a hydrothermal mineral (i.e., dickite) integrated with dramatic relative chemical enrichment and relative depletion within a yellowish zone, suggesting the presence of vigorous high-temperature fluid–rock interactions, which are likely the fingerprint of thermal pressurization. This is further supported by the absence of carbonaceous materials (CMs) given the spectrometric data obtained. Interestingly, the Raman parameters measured near the carbonaceous-rich gouge fall within the recognized range of graphitization in the mature fault zone, implying the origin of a mature fault, as shown in the companion paper. According to both the sharp boundary within the very recent coseismic rupture zone of the 2008 MW-7.9 Wenchuan earthquake and the presence of kinetically unstable dickite, it is strongly implied that the yellow/altered gouge likely formed from a recent coseismic event as aconsequence of hydrothermal fluid penetration. We further surmise that the CM characteristics varied according to several driving reactions, e.g., transient hydrothermal heating versus long-term geological metamorphism and sedimentation.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018
    Description: In recent works on the determination of graphitization of carbonaceous materials (CM) within the principal slip zone (PSZ) of the Longmenshan fault (China), we demonstrated that the formation of graphite, resulted from strain and frictional heating, could be evidence of past seismic slip. Here we utilize Raman Spectroscopy of CM (RSCM) on the CM-bearing gouges in the fault zone of the Longmenshan fault belt, at the borehole depth of 760 m (FZ760) from the Wenchuan earthquake Fault Scientific Drilling project-1 (WFSD-1), to quantitatively characterize CM and further retrieve ancient fault deformation information in the active fault. RSCM shows that graphitization of CM is intense in the fault core with respect to the damage zone, with the graphitized carbon resembling those observed on experimentally formed graphite that was frictionally generated. Importantly, compared to the recognized active fault zone of the Longmenshan fault, the RSCM of measured CM-rich gouge shows a higher degree of graphitization, likely derived from high-temperature-perturbation faulting events. It implies that FZ760 accommodated numerous single-event displacement and/or at higher normal stresses and/or in the absence of pore fluid and/or along a more localized slip surface(s). Because graphite is a well-known lubricant, we surmise that the presence of the higher degree graphitized CM within FZ760 will reduce the fault strength and inefficiently accumulate tectonic stress during the seismic cycle at the current depth, and further infer a plausible mechanism for fault propagation at the borehole depth of 590 m during the Mw 7.9 Wenchuan earthquake.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018
    Description: Graphitization of carbonaceous materials (CM) has been experimentally demonstrated as potential evidence of seismic slip within a fault gouge. The southern segment of the Longmenshan fault, a CM-rich-gouge fault, accommodated coseismic slip during the 2008 Mw 7.9 Wenchuan earthquake and potentially preserves a record of processes that occurred on the fault during the slip event. Here, we present a multi-technique characterization of CM within the active fault zone of the Longmenshan fault from the Wenchuan earthquake Fault Scientific Drilling-1. By contrast with field observations, graphite is pervasively and only distributed in the gouge zone, while heterogeneously crystallized CM are present in the surrounding breccia. The composite dataset that is presented, which includes the localized graphite layer along the 2008 Wenchuan earthquake principal slip zone, demonstrates that graphite is widely distributed within the active fault zone. The widespread occurrence of graphite, a seismic slip indicator, reveals that surface rupturing events commonly occur along the Longmenshan fault and are characteristic of this tectonically active region.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...