ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: Hemp is one of the most important green (i.e., environmentally sustainable) fibers. Planting density, nitrogen (N), phosphorus (P) and potassium (K) significantly affect the yield of hemp fiber. By optimizing the above main four cultivation factors is an important way to achieve sustainable development of high-fiber yield hemp crops. In this study, the effects of individual factors and factor × factor interactions on the yield of hemp fiber over two trial years were investigated by the central composite design with four factors, namely planting density, nitrogen application, phosphorus application, and potassium application rate. The influences of these four test factors on the yield of hemp fibers were in the order nitrogen fertilizer (X2) 〉 planting density (X1) 〉 potassium fertilizer (X4) 〉 phosphate fertilizer (X3). To obtain yields of hemp with high-quality fiber greater than 2200 kg ha−1, the optimal range of cultivation conditions were planting density 329,950–371,500 plants/ha, nitrogen application rate 251–273 kg ha−1, phosphorus application rate 85–95 kg ha−1, and potassium application rate 212–238 kg ha−1. This study can provide important technical and theoretical support for the high-yield cultivation of hemp fiber into the future.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: Agave species are important crassulacean acid metabolism (CAM) plants and widely cultivated in tropical areas for producing tequila spirit and fiber. The hybrid H11648 of Agave ((A. amaniensis × A. angustifolia) × A. amaniensis) is the main cultivar for fiber production in Brazil, China, and African countries. Small Auxin Up-regulated RNA (SAUR) genes have broad effect on auxin signaling-regulated plant growth and development, while only few SAUR genes have been reported in Agave species. In this study, we identified 43, 60, 24, and 21 SAUR genes with full-length coding regions in A. deserti, A. tequilana, A. H11648, and A. americana, respectively. Although phylogenetic analysis revealed that rice contained a species-specific expansion pattern of SAUR gene, no similar phenomena were observed in Agave species. The in silico expression indicated that SAUR genes had a distinct expression pattern in A. H11648 compared with other Agave species; and four SAUR genes were differentially expressed during CAM diel cycle in A. americana. Additionally, an expression analysis was conducted to estimate SAUR gene expression during different leaf developmental stages, abiotic and biotic stresses in A. H11648. Together, we first characterized the SAUR genes of Agave based on previously published transcriptome datasets and emphasized the potential functions of SAUR genes in Agave’s leaf development and stress responses. The identification of which further expands our understanding on auxin signaling-regulated plant growth and development in Agave species.
    Electronic ISSN: 2073-4425
    Topics: Biology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...