ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: High dam discharge can lead to total dissolved gas (TDG) supersaturation in the downstream river, and fish in the TDG-supersaturated flow can suffer from bubble disease and even die. Consequently, it is of great value to study the transport and dissipation characteristics of supersaturated dissolved gas for the protection of river fish. Floodplains may form downstream of high dams due to flood discharge, and the plants on these floodplains can affect both the hydraulic characteristics and TDG transport of the flowing water. In this study, the velocity distribution and the retention response time under different flow conditions and vegetation arrangements were studied in a series of experiments. The retention time was significantly extended by the presence of vegetation, and an empirical formula for calculating the retention time was proposed. In addition, the responses of the dissipation process of supersaturated TDG to hydraulic factors, retention time, and vegetation area coefficient were analyzed. The dissipation of supersaturated TDG significantly increased with increases in the vegetation area coefficient in the water. To quantitatively describe the TDG dissipation process in TDG-supersaturated flow under the effect of vegetation, the TDG dissipation coefficient was fitted and analyzed. The basic form of the formula for the dissipation coefficient involving various influence factors was determined by dimensional analysis. An equation for calculating the TDG dissipation coefficient of flowing water with vegetation was proposed by multivariate nonlinear fitting and was proven to have great prediction accuracy. The calculated method developed in this paper can be used to predict TDG dissipation in flowing water with vegetation and is of great significance for enriching TDG prediction systems.
    Print ISSN: 1661-7827
    Electronic ISSN: 1660-4601
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018
    Description: The recent construction and operation of high dams have greatly changed the natural flood process. To meet the ecological demands and flood control requirements of rivers, dams discharge flow through the flood discharge facility, always accompanied by total dissolved gas (TDG) supersaturation in the water, which is harmful to fish. The purpose of this paper is to explore the dissipation characteristics and prediction methods of supersaturated TDG in water flowing through a floodplain covered with vegetation. A three-dimensional two-phase supersaturated TDG transportation and dissipation model considering the effects of vegetation was established. Using existing mechanism experimental results, the inner dissipation coefficient kin of TDG in vegetation-affected flows was studied, and the quantitative relationships between the inner dissipation coefficient kin and the average flow velocity, average water depth, average water radius, Reynolds number, and vegetation density were characterized. Based on the simulation results, the distribution characteristics of the supersaturated TDG in water around vegetation and in the vertical, lateral, and longitudinal directions of the flume under different flow and vegetation densities were analyzed. A supersaturated TDG transportation and dissipation model for vegetation-affected flow is proposed and can be used to predict the impact of TDG in a floodplain.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...