ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: Two types of urea biosensors were integrated with a wireless measurement system and microfluidic measurement system. The two biosensors used were (i) a magnetic beads (MBs)-urease/graphene oxide (GO)/titanium dioxide (TiO2)-based biosensor and (ii) an MBs-urease/GO/ nickel oxide (NiO)-based biosensor, respectively. The wireless measurement system work exhibited the feasibility for the remote detection of urea, but it will require refinement and modification to improve stability and precision. The microchannel fluidic system showed the measurement reliability. The sensing properties of urea biosensors at different flow rates were investigated. From the measurement results, the decay of average sensitivity may be attributed to the induced vortex-induced vibrations (VIV) at the high flow rate. In the aspect of wireless monitoring, the average sensitivity of the urea biosensor based on MBs-urease/GO/NiO was 4.780 mV/(mg/dl) and with the linearity of 0.938. In the aspect of measurement under dynamic conditions, the average sensitivity of the urea biosensor based on MBs-urease/GO/NiO were 5.582 mV/(mg/dl) and with the linearity of 0.959. Both measurements performed NiO was better than TiO2 according to the comparisons.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: The sub-Saharan African coast is experiencing fast-growing urbanization, particularly around major cities. This threatens the equilibrium of the socio-ecosystems where they are located and on which they depend: underground water resources are exploited with a disregard for sustainability; land is reclaimed from wetlands or lagoons; built-up areas, both formal and informal, grow without adequate urban planning. Together, all these forces can result in land surface deformation, subsidence or even uplift, which can increase risk within these already fragile socio-ecosystems. In particular, in the case of land subsidence, the risk of urban flooding can increase significantly, also considering the contribution of sea level rise driven by climate change. Monitoring such fast-changing environments is crucial to be able to identify key risks and plan adaptation responses to mitigate current and future flood risks. Persistent scatterer interferometry (PSI) with synthetic aperture radar (SAR) is a powerful tool to monitor land deformation with high precision using relatively low-cost technology, also thanks to the open access data of Sentinel-1, which provides global observations every 6 days at 20-m ground resolution. In this paper, we demonstrate how it is possible to monitor land subsidence in urban coastal areas by means of permanent scatterer interferometry and Sentinel-1, exploiting an automatic procedure based on an integration of the Sentinel Application Platform (SNAP) and the Stanford Method for Persistent Scatterers (StaMPS). We present the results of PSI analysis over the cities of Banjul (the Gambia) and Lagos (Nigeria) showing a comparison of results obtained with TerraSAR-X, Constellation of Small Satellites for the Mediterranean Basin Observation (COSMO-SkyMed) and Environmental Satellite advanced synthetic aperture radar (Envisat-ASAR) data. The methodology allows us to highlight areas of high land deformation, information that is useful for urban development, disaster risk management and climate adaptation planning.
    Electronic ISSN: 2076-3263
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: Adaptation is a critical option to cope with climate change, as it alleviates the residual climate damages not avoided by emission reduction measures. However, adaptive actions can consume extra amounts of energy. This paper introduces a framework to identify the energy use associated with adaptation and qualifies its relevance in terms of sustainable development. A qualitative, bottom-up analysis of the policy commitments submitted in the context of the Paris Agreement and the 2030 UN Agenda for sustainable development is complemented with a review of the literature on adaptation, energy, and sustainable development. The analysis of the policy options related to vulnerability reduction in the Nationally Determined Contributions reveals a set of recurring adaptation strategies strongly associated with energy use. By linking the resulting options to the United Nations’ Sustainable Development Goal (SDG) targets and indicators, we show that energy-related adaptation options are all connected to at least one SDG, though the strength of the connection varies across adaptation options and SDGs. The descriptive synthesis provided in this paper sets a framework for future research aimed at assessing the energy implications of adaptation strategies, contributing to further understand the nexus between climate policy and development.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019
    Description: This paper examines the impact on experimental uncertainty of introducing aerodynamic and rotor gyroscopic loading on a model multirotor floating wind energy platform during physical testing. In addition, a methodology and a metric are presented for the assessment of the uncertainty across the full time series for the response of a floating wind energy platform during wave basin testing. It is shown that there is a significant cost incurred in terms of experimental uncertainty through the addition of rotor thrust in the laboratory environment for the considered platform. A slight reduction in experimental uncertainty is observed through the introduction of gyroscopic rotor loading for most platform responses.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019
    Description: The offshore wind industry has seen unprecedented growth over the last few years. In line with this growth, there has been a push towards more exposed sites, farther from shore, in deeper water with consequent increased investor risk. There is therefore a growing need for accurate, reliable, met-ocean data to identify suitable sites, and from which to base preliminary design and investment decisions. This study investigates the potential of hyper-temporal satellite remote sensing Advanced Scatterometer (ASCAT) data in generating information necessary for the optimal site selection of offshore renewable energy infrastructure, and hence providing a cost-effective alternative to traditional techniques, such as in situ data from public or private entities and modelled data. Five years of the ASCAT 12.5 km wind product were validated against in situ weather buoys and showed a strong correlation with a Pearson coefficient of 0.95, when the in situ measurements were extrapolated with the log law. Temporal variations depicted by the ASCAT wind data followed the same inter-seasonal and intra-annual variations as the in situ measurements. A small diurnal bias of 0.12 m s−1 was observed between the descending swath (10:00 to 12:00) and the ascending swath (20:30 to 22:30), indicating that Ireland’s offshore wind speeds are slightly stronger in the daytime, especially in the nearshore areas. Seasonal maps showed that the highest spatial variability in offshore wind speeds are exhibited in winter and summer. The mean wind speed extrapolated at 80 m above sea level showed that Ireland’s mean offshore wind speeds at hub height ranged between 9.6 m s−1 and 12.3 m s−1. To best represent the offshore wind resource and its spatial distribution, an operational frequency map and a maximum yield frequency map were produced based on the ASCAT wind product in an offshore zone between 20 km and 200 km from the coast. The operational frequency indicates the percentage of time during which the observed local wind speed is between cut-in (3 m/s) and cut-out (25 m/s) for a standard turbine. The operational frequency map shows that the frequency of the wind speed within the cut-in and cut-off range of wind turbines was between 92.4% and 97.2%, while the maximum yield frequency map showed that between 40.6% and 59.5% of the wind speed frequency was included in the wind turbine rated power range. The results showed that the hyper-temporal ASCAT 12.5 km wind speed product (five consecutive years, two observations daily per satellite, two satellites) is representative of wind speeds measured by in situ measurements in Irish waters, and that its ability to depict temporal and spatial variability can assist in the decision-making process for offshore wind farm site selection in Ireland.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019
    Description: Higher Education Institutions (HEIs) are potent health promotion settings, uniquely positioned to aid societal efforts to combat non-communicable diseases (NCDs). International evidence suggests that health metrics and lifestyle behaviours of higher education students are sub-optimal, yet a dearth of contemporary Irish data exists. This study aimed to examine sex differences in student lifestyle behaviours and identify significant predictors of positive mental health in an Irish HEI setting. An online questionnaire instrument distributed to all registered students (n = 11,261) gathered data regarding a multitude of health and lifestyle domains. Many items were adapted from previous Irish research. Further validated scales included the Alcohol Use Disorders Identification Test (AUDIT), Mental-Health Index 5 (MHI-5) and the Energy and Vitality Index (EVI). Self-reported height/body mass were also recorded. In total, 2267 responses were analysed (51.7% female, 48.3% male). Both sexes demonstrated poor sleeping patterns, hazardous drinking and sub-optimal fruit and vegetable intake. The calculated prevalence of overweight/obesity was 38.2%. Both sexes underestimated obesity. Males underestimated and females overestimated overweight. Males displayed riskier behavioural patterns with regard to illicit substances, drinking, and sexual partners. Females reported greater psychological distress. Multivariate linear regression identified 8 variables as predictors of positive mental health, accounting for 37% of the variance in EVI scores. In conclusion, HEI students would benefit from sex-specific multi-level health promotion initiatives to remove macro-level barriers to healthier lifestyles.
    Print ISSN: 1661-7827
    Electronic ISSN: 1660-4601
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...