ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: The weed Phalaris brachystachys Link. severely affects winter cereal production. Acetyle-CoA Carboxylase (ACCase)-inhibiting herbicides are commonly used to control this weed in wheat fields. Thirty-six populations with suspected resistance to ACCase-inhibiting herbicides were collected from wheat fields in the Golestan Province in Iran. A rapid test performed in Petri dishes and whole-plant dose–response experiments were conducted to confirm and investigate the resistance level of P. brachystachys to ACCase-inhibiting herbicides. The seed bioassay results showed that 0.02 mg ai L−1 clodinafop-propargyl (CP) and 1.36 mg ai L−1 of the diclofop-methyl (DM) solution were the optimal amounts for reliably screening resistant and susceptible P. brachystachys populations. In the whole plant bioassay, all populations were found to be resistant to CP, resistance ratios ranging from 2.7 to 11.6, and all of the CP-resistant populations exhibited resistance to DM. Fourteen populations showed low resistance to cycloxydim, and thirteen of these populations were also 2-fold resistant to pinoxaden. The results showed that DM resistance in some P. brachystachys populations is likely due to their enhanced herbicide metabolism, which involves Cytochrome P450 monooxygenases, as demonstrated by the indirect assay. This is the first report confirming the cross-resistance of ACCase-inhibiting herbicides in P. brachystachys in Iran.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: The paper addresses the evaluation of the uncertainty sources of a test bed system for calibrating voltage transformers vs. temperature. In particular, the Monte Carlo method has been applied in order to evaluate the effects of the uncertainty sources in two different conditions: by using the nominal accuracy specifications of the elements which compose the setup, or by exploiting the results of their metrological characterization. In addition, the influence of random effects on the system accuracy has been quantified and evaluated. From the results, it emerges that the choice of the uncertainty evaluation method affects the overall study. As a matter of fact, the use of a metrological characterization or of accuracy specifications provided by the manufacturers provides respectively an accuracy of 0.1 and 0.5 for the overall measurement setup.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...