ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (38)
  • MDPI  (38)
  • Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics  (38)
  • Political Science
  • 1
    Publication Date: 2019
    Description: Titanium is one of the most interesting materials in modern manufacturing thanks to its good mechanical properties and light weight. These features make it very attractive for use in the aeronautical and aerospace industries. Important alloys, such as Ti6Al4V, are extensively used. Nevertheless, titanium alloys present several problems in machining processes. Their machinability is poor, affected by low thermal conductivity, which generates very high cutting temperatures and thermal gradients in the cutting tool. Lubricants and cutting fluids have traditionally been used to solve this problem. However, this option is unsustainable as such lubricants represent a risk to the environment and to the health of the operator due to their different chemical components. Therefore, novel, sustainable and green lubrication techniques are necessary. Dry machining is the most sustainable option. Nevertheless, difficult-to-machine materials like titanium alloys cannot be machined under these conditions, leading to very high cutting temperatures and excessive tool wear. This study is intended to describe, analyse and review the non-traditional lubrication techniques developed in turning, drilling and milling processes since 2015, including minimum quantity of lubricant, cryogenic lubrication, minimum quantity of cooling lubrication or high-pressure coolant. The aim is to provide a general overview of the recent advances in each technique for the main machining processes.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: Gliotoxin (GT), a secondary metabolite produced by Aspergillus molds, has been proposed as a potential anti-tumor agent. Here we have developed a nanoparticle approach to enhance delivery of GT in tumor cells and establish a basis for its potential use as therapeutical drug. GT bound to magnetic nanoparticles (MNPs) retained a high anti-tumor activity, correlating with efficient intracellular delivery, which was increased in the presence of glucose. Our results show that the attachment of GT to MNPs by covalent bonding enhances intracellular GT delivery without affecting its biological activity. This finding represents the first step to use this potent anti-tumor agent in the treatment of cancer.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: Additive manufacturing is becoming a technique with great prospects for the production of components with new designs or shapes that are difficult to obtain by conventional manufacturing methods. One of the most promising techniques for printing metallic components is binder jetting, due to its time efficiency and its ability to generate complex parts. In this process, a liquid binding agent is selectively deposited to adhere the powder particles of the printing material. Once the metallic piece is generated, it undergoes a subsequent process of curing and sintering to increase its density (hot isostatic pressing). In this work, we propose subjecting the manufactured component to an additional post-processing treatment involving the application of a high hydrostatic pressure (5000 bar) at room temperature. This post-processing technique, so-called cold isostatic pressing (CIP), is shown to increase the yield load and the maximum carrying capacity of an additively manufactured AISI 316L stainless steel. The mechanical properties, with and without CIP processing, are estimated by means of the small punch test, a suitable experimental technique to assess the mechanical response of small samples. In addition, we investigate the porosity and microstructure of the material according to the orientations of layer deposition during the manufacturing process. Our observations reveal a homogeneous distribution independent of these orientations, evidencing thus an isotropic behaviour of the material.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019
    Description: The experimental stress-strain curves from the standardized tests of Tensile, Plane Stress, Compression, Volumetric Compression, and Shear, are normally used to obtain the invariant λi and constants of material Ci that will define the behavior elastomers. Obtaining these experimental curves requires the use of expensive and complex experimental equipment. For years, a direct method called model updating, which is based on the combination of parameterized finite element (FE) models and experimental force-displacement curves, which are simpler and more economical than stress-strain curves, has been used to obtain the Ci constants. Model updating has the disadvantage of requiring a high computational cost when it is used without the support of any known optimization method or when the number of standardized tests and required Ci constants is high. This paper proposes a methodology that combines the model updating method, the mentioned standardized tests and the multi-response surface method (MRS) with desirability functions to automatically determine the most appropriate Ci constants for modeling the behavior of a group of elastomers. For each standardized test, quadratic regression models were generated for modeling the error functions (ER), which represent the distance between the force-displacement curves that were obtained experimentally and those that were obtained by means of the parameterized FE models. The process of adjusting each Ci constant was carried out with desirability functions, considering the same value of importance for all of the standardized tests. As a practical example, the proposed methodology was validated with the following elastomers: nitrile butadiene rubber (NBR), ethylene-vinyl acetate (EVA), styrene butadiene rubber (SBR) and polyurethane (PUR). Mooney–Rivlin, Ogden, Arruda–Boyce and Gent were considered as the hyper-elastic models for modeling the mechanical behavior of the mentioned elastomers. The validation results, after the Ci parameters were adjusted, showed that the Mooney–Rivlin model was the hyper-elastic model that has the least error of all materials studied (MAEnorm = 0.054 for NBR, MAEnorm = 0.127 for NBR, MAEnorm = 0.116 for EVA and MAEnorm = 0.061 for NBR). The small error obtained in the adjustment of the Ci constants, as well as the computational cost of new materials, suggests that the methodology that this paper proposes could be a simpler and more economical alternative to use to obtain the optimal Ci constants of any type of elastomer than other more sophisticated methods.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018
    Description: This paper focuses on investigating the residual stress values associated with a part fabricated by Selective Laser Melting technology (SLM) when this is subjected further to forces on single point incremental forming (SPIF) operation of variable wall angle. The residual stresses induced by the SLM manufacturing process on the fabricated AlSi10Mg metallic sheets, as well as those produced during their forming SPIF operation were determined by X-ray diffraction (XRD) measurements. Significant residual stress levels of variation, positive or negative, along the metallic sample were observed because of the bending effects induced by the SPIF processes. It is also shown how the wall thickness varies along the additive manufactured SPIFed part as well as the morphology of the melting pools as a function of the deformation depth.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018
    Description: The aluminum recycling industry produces aluminum filter dust (AFD), a waste byproduct of the aluminum recycling process composed mainly of aluminum oxide in a percentage between 60–70%, 8% calcium oxide, almost 15% sodium chloride, and between 5–10% potassium chloride. Due to its aluminum content, this waste can be used as a raw material in the manufacture of ceramic bricks, at the same time reducing the environmental impact produced in landfill. In this work, the partial substitution of a clay mixture (40% black, 30% red, and 30% yellow clay) by different proportions of AFD in the range 0–25 wt % for the production of fired clay brick was studied. The raw materials, clays, and waste were characterized by XRF and XRD. The brick specimens were fired at 950 °C and their physical and mechanical properties, such as water absorption, water suction, loss of ignition, linear shrinkage, bulk density, and compressive strength, were analyzed. The more relevant results were obtained with the addition of up to 20 wt % AFD, obtaining bricks with physical properties comparable to pure clay-based bricks used as a reference and better compressive strength and thermal conductivity due to the balance between the melting and pore-forming effects of the waste. These sustainable bricks also comply with the regulations of heavy metals leached to the environment, as indicated by the leaching test.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018
    Description: The incorporation of plastic matrix composite materials into structural elements of the aeronautical industry requires contour machining and drilling processes along with metallic materials prior to final assembly operations. These operations are usually performed using conventional techniques, but they present problems derived from the nature of each material that avoid implementing One Shot Drilling strategies that work separately. In this work, the study focuses on the evaluation of the feasibility of Abrasive Waterjet Machining (AWJM) as a substitute for conventional drilling for stacks formed of Carbon Fiber Reinforced Plastic (CFRP) and aluminum alloy UNS A97050 through the study of the influence of abrasive mass flow rate, traverse feed rate and water pressure in straight cuts and drills. For the evaluation of the straight cuts, Stereoscopic Optical Microscopy (SOM) and Scanning Electron Microscopy (SEM) techniques were used. In addition, the kerf taper through the proposal of a new method and the surface quality in different cutting regions were evaluated. For the study of holes, the macrogeometric deviations of roundness, cylindricity and straightness were evaluated. Thus, this experimental procedure reveals the conditions that minimize deviations, defects, and damage in straight cuts and holes obtained by AWJM.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019
    Description: The ideal in vitro recreation of the micro-tumor niche—although much needed for a better understanding of cancer etiology and development of better anticancer therapies—is highly challenging. Tumors are complex three-dimensional (3D) tissues that establish a dynamic cross-talk with the surrounding tissues through complex chemical signaling. An extensive body of experimental evidence has established that 3D culture systems more closely recapitulate the architecture and the physiology of human solid tumors when compared with traditional 2D systems. Moreover, conventional 3D culture systems fail to recreate the dynamics of the tumor niche. Tumor-on-chip systems, which are microfluidic devices that aim to recreate relevant features of the tumor physiology, have recently emerged as powerful tools in cancer research. In tumor-on-chip systems, the use of microfluidics adds another dimension of physiological mimicry by allowing a continuous feed of nutrients (and pharmaceutical compounds). Here, we discuss recently published literature related to the culture of solid tumor-like tissues in microfluidic systems (tumor-on-chip devices). Our aim is to provide the readers with an overview of the state of the art on this particular theme and to illustrate the toolbox available today for engineering tumor-like structures (and their environments) in microfluidic devices. The suitability of tumor-on-chip devices is increasing in many areas of cancer research, including the study of the physiology of solid tumors, the screening of novel anticancer pharmaceutical compounds before resourcing to animal models, and the development of personalized treatments. In the years to come, additive manufacturing (3D bioprinting and 3D printing), computational fluid dynamics, and medium- to high-throughput omics will become powerful enablers of a new wave of more sophisticated and effective tumor-on-chip devices.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019
    Description: In this work we present a novel algorithm for generating in-silico biomimetic models of a cortical bone microstructure towards manufacturing biomimetic bone via additive manufacturing. The software provides a tool for physicians or biomedical engineers to develop models of cortical bone that include the inherent complexity of the microstructure. The correspondence of the produced virtual prototypes with natural bone tissue was assessed experimentally employing Digital Light Processing (DLP) of a thermoset polymer resin to recreate healthy and osteoporotic bone tissue microstructure. The proposed tool was successfully implemented to develop cortical bone structure based on osteon density, cement line thickness, and the Haversian and Volkmann channels to produce a user-designated bone porosity that matches within values reported from literature for these types of tissues. Characterization of the specimens using a Scanning Electron Microscopy with Focused Ion Beam (SEM/FIB) and Computer Tomography (CT) revealed that the manufacturability of intricated virtual prototype is possible for scaled-up versions of the tissue. Modeling based on the density, inclination and size range of the osteon and Haversian and Volkmann´s canals granted the development of a dynamic in-silico porosity (13.37–21.49%) that matches with models of healthy and osteoporotic bone. Correspondence of the designed porosity with the manufactured assessment (5.79–16.16%) shows that the introduced methodology is a step towards the development of more refined and lifelike porous structures such as cortical bone. Further research is required for validation of the proposed methodology model of the real bone tissue and as a patient-specific customization tool of synthetic bone.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019
    Description: Titanium alloys are widely used in important manufacturing sectors such as the aerospace industry, internal components of motor or biomechanical components, for the development of functional prostheses. The relationship between mechanical properties and weight and its excellent biocompatibility have positioned this material among the most demanded for specific applications. However, it is necessary to consider the low machinability as a disadvantage in the titanium alloys features. This fact is especially due to the low thermal conductivity, producing significant increases in the temperature of the contact area during the machining process. In this aspect, one of the main objectives of strategic industries is focused on the improvement of the efficiency and the increase of the service life of the elements involved in the machining of this alloy. With the aim to understand the most relevant effects in the machinability of the Ti6Al4V alloy, an analysis is required of different variables of the machining process like tool wear evolution, based on secondary adhesion mechanisms, and the relation between surface roughness of the work-pieces with the cutting parameters. In this research work, a study on the machinability of Ti6Al4V titanium alloy has been performed. For that purpose, in a horizontal turning process, the influence of cutting tool wear effects has been evaluated on the surface finish of the machined element. As a result, parametric behavior models for average roughness (Ra) have been determined as a function of the machining parameters used.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...