ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI  (7)
  • Wiley  (3)
  • Alfred Wegener Institute for Polar and Marine Research & German Society of Polar Research  (2)
  • 1
  • 2
    Publication Date: 2018-02-01
    Electronic ISSN: 2150-8925
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley on behalf of Ecological Society of America.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-16
    Description: Water bodies are ubiquitous features in Arctic wetlands. Ponds, i.e., waters with a surface area smaller than 104 m2, have been recognized as hotspots of biological activity and greenhouse gas emissions but are not well inventoried. This study aimed to identify common characteristics of three Arctic wetlands including water body size and abundance for different spatial resolutions, and the potential of Landsat-5 TM satellite data to show the subpixel fraction of water cover (SWC) via the surface albedo. Water bodies were mapped using optical and radar satellite data with resolutions of 4mor better, Landsat-5 TM at 30mand the MODIS water mask (MOD44W) at 250m resolution. Study sites showed similar properties regarding water body distributions and scaling issues. Abundance-size distributions showed a curved pattern on a log-log scale with a flattened lower tail and an upper tail that appeared Paretian. Ponds represented 95% of the total water body number. Total number of water bodies decreased with coarser spatial resolutions. However, clusters of small water bodies were merged into single larger water bodies leading to local overestimation of water surface area. To assess the uncertainty of coarse-scale products, both surface water fraction and the water body size distribution should therefore be considered. Using Landsat surface albedo to estimate SWC across different terrain types including polygonal terrain and drained thermokarst basins proved to be a robust approach. However, the albedo–SWC relationship is site specific and needs to be tested in other Arctic regions. These findings present a baseline to better represent small water bodies of Arctic wet tundra environments in regional as well as global ecosystem and climate models.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-23
    Description: The timing of snowmelt is an important turning point in the seasonal cycle of small Arctic catchments. The TerraSAR-X (TSX) satellite mission is a synthetic aperture radar system (SAR) with high potential to measure the high spatiotemporal variability of snow cover extent (SCE) and fractional snow cover (FSC) on the small catchment scale. We investigate the performance of multi-polarized and multi-pass TSX X-Band SAR data in monitoring SCE and FSC in small Arctic tundra catchments of Qikiqtaruk (Herschel Island) off the Yukon Coast in the Western Canadian Arctic. We applied a threshold based segmentation on ratio images between TSX images with wet snow and a dry snow reference, and tested the performance of two different thresholds. We quantitatively compared TSX- and Landsat 8-derived SCE maps using confusion matrices and analyzed the spatiotemporal dynamics of snowmelt from 2015 to 2017 using TSX, Landsat 8 and in situ time lapse data. Our data showed that the quality of SCE maps from TSX X-Band data is strongly influenced by polarization and to a lesser degree by incidence angle. VH polarized TSX data performed best in deriving SCE when compared to Landsat 8. TSX derived SCE maps from VH polarization detected late lying snow patches that were not detected by Landsat 8. Results of a local assessment of TSX FSC against the in situ data showed that TSX FSC accurately captured the temporal dynamics of different snow melt regimes that were related to topographic characteristics of the studied catchments. Both in situ and TSX FSC showed a longer snowmelt period in a catchment with higher contributions of steep valleys and a shorter snowmelt period in a catchment with higher contributions of upland terrain. Landsat 8 had fundamental data gaps during the snowmelt period in all 3 years due to cloud cover. The results also revealed that by choosing a positive threshold of 1 dB, detection of ice layers due to diurnal temperature variations resulted in a more accurate estimation of snow cover than a negative threshold that detects wet snow alone. We find that TSX X-Band data in VH polarization performs at a comparable quality to Landsat 8 in deriving SCE maps when a positive threshold is used. We conclude that TSX data polarization can be used to accurately monitor snowmelt events at high temporal and spatial resolution, overcoming limitations of Landsat 8, which due to cloud related data gaps generally only indicated the onset and end of snowmelt.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Alfred Wegener Institute for Polar and Marine Research & German Society of Polar Research
    In:  EPIC3Polarforschung, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research & German Society of Polar Research, 85(2), pp. 135-141, ISSN: 00322490
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: "Polarforschung" , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-06-14
    Description: We analyzed chlorophyll-a and Colored Dissolved Organic Matter (CDOM) dynamics from field measurements and assessed the potential of multispectral satellite data for retrieving water-quality parameters in three small surface reservoirs in the Brazilian semiarid region. More specifically, this work is comprised of: (i) analysis of Chl-a and trophic dynamics; (ii) characterization of CDOM; (iii) estimation of Chl-a and CDOM from OLI/Landsat-8 and RapidEye imagery. The monitoring lasted 20 months within a multi-year drought, which contributed to water-quality deterioration. Chl-a and trophic state analysis showed a highly eutrophic status for the perennial reservoir during the entire study period, while the non-perennial reservoirs ranged from oligotrophic to eutrophic, with changes associated with the first events of the rainy season. CDOM characterization suggests that the perennial reservoir is mostly influenced by autochthonous sources, while allochthonous sources dominate the non-perennial ones. Spectral-group classification assigned the perennial reservoir as a CDOM-moderate and highly eutrophic reservoir, whereas the non-perennial ones were assigned as CDOM-rich and oligotrophic-dystrophic reservoirs. The remote sensing initiative was partially successful: the Chl-a was best modelled using RapidEye for the perennial one; whereas CDOM performed best with Landsat-8 for non-perennial reservoirs. This investigation showed potential for retrieving water quality parameters in dry areas with small reservoirs
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-03-02
    Description: In this study, we analyze interactions in lake and lake catchment systems of a continuous permafrost area. We assessed colored dissolved organic matter (CDOM) absorption at 440 nm (a(440)CDOM) and absorption slope (S300–500) in lakes using field sampling and optical remote sensing data for an area of 350 km2 in Central Yamal, Siberia. Applying a CDOM algorithm (ratio of green and red band reflectance) for two high spatial resolution multispectral GeoEye-1 and Worldview-2 satellite images, we were able to extrapolate the a(λ)CDOM data from 18 lakes sampled in the field to 356 lakes in the study area (model R2 = 0.79). Values of a(440)CDOM in 356 lakes varied from 0.48 to 8.35 m−1 with a median of 1.43 m−1. This a(λ)CDOM dataset was used to relate lake CDOM to 17 lake and lake catchment parameters derived from optical and radar remote sensing data and from digital elevation model analysis in order to establish the parameters controlling CDOM in lakes on the Yamal Peninsula. Regression tree model and boosted regression tree analysis showed that the activity of cryogenic processes (thermocirques) in the lake shores and lake water level were the two most important controls, explaining 48.4% and 28.4% of lake CDOM, respectively (R2 = 0.61). Activation of thermocirques led to a large input of terrestrial organic matter and sediments from catchments and thawed permafrost to lakes (n = 15, mean a(440)CDOM = 5.3 m−1). Large lakes on the floodplain with a connection to Mordy-Yakha River received more CDOM (n = 7, mean a(440)CDOM = 3.8 m−1) compared to lakes located on higher terraces.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Alfred Wegener Institute for Polar and Marine Research & German Society of Polar Research
    In:  EPIC3Polarforschung, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research & German Society of Polar Research, 85(2), pp. 107-115, ISSN: 00322490
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: "Polarforschung" , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-08-16
    Description: In permafrost areas, seasonal freeze-thaw cycles result in upward and downward movements of the ground. For some permafrost areas, long-term downward movements were reported during the last decade. We measured seasonal and multi-year ground movements in a yedoma region of the Lena River Delta, Siberia, in 2013–2017, using reference rods installed deep in the permafrost. The seasonal subsidence was 1.7 +- 1.5 cm in the cold summer of 2013 and 4.8 +- 2 cm in the warm summer of 2014. Furthermore, we measured a pronounced multi-year net subsidence of 9.3 +- 5.7 cm from spring 2013 to the end of summer 2017. Importantly, we observed a high spatial variability of subsidence of up to 6 cm across a sub-meter horizontal scale. In summer 2013, we accompanied our field measurements with Differential Synthetic Aperture Radar Interferometry (DInSAR) on repeat-pass TerraSAR-X (TSX) data from the summer of 2013 to detect summer thaw subsidence over the same study area. Interferometry was strongly affected by a fast phase coherence loss, atmospheric artifacts, and possibly the choice of reference point. A cumulative ground movement map, built from a continuous interferogram stack, did not reveal a subsidence on the upland but showed a distinct subsidence of up to 2 cm in most of the thermokarst basins. There, the spatial pattern of DInSAR-measured subsidence corresponded well with relative surface wetness identified with the near infra-red band of a high-resolution optical image. Our study suggests that (i) although X-band SAR has serious limitations for ground movement monitoring in permafrost landscapes, it can provide valuable information for specific environments like thermokarst basins, and (ii) due to the high sub-pixel spatial variability of ground movements, a validation scheme needs to be developed and implemented for future DInSAR studies in permafrost environments.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-07-04
    Description: The Arctic is directly impacted by climate change. The increase in air temperature drives the thawing of permafrost and an increase in coastal erosion and river discharge. This leads to a greater input of sediment and organic matter into coastal waters, which substantially impacts the ecosystems, the subsistence economy of the local population, and the climate because of the transformation of organic matter into greenhouse gases. Yet, the patterns of sediment dispersal in the nearshore zone are not well known, because ships do not often reach shallow waters and satellite remote sensing is traditionally focused on less dynamic environments. The goal of this study is to use the extensive Landsat archive to investigate sediment dispersal patterns specifically on an exemplary Arctic nearshore environment, where field measurements are often scarce. Multiple Landsat scenes were combined to calculate means of sediment dispersal and sea surface temperature under changing seasonal wind conditions in the nearshore zone of Herschel Island Qikiqtaruk in the western Canadian Arctic since 1982. We use observations in the Landsat red and thermal wavebands, as well as a recently published water turbidity algorithm to relate archive wind data to turbidity and sea surface temperature. We map the spatial patterns of turbidity and water temperature at high spatial resolution in order to resolve transport pathways of water and sediment at the water surface. Our results show that these pathways are clearly related to the prevailing wind conditions, being ESE and NW. During easterly wind conditions, both turbidity and water temperature are significantly higher in the nearshore area. The extent of the Mackenzie River plume and coastal erosion are the main explanatory variables for sediment dispersal and sea surface temperature distributions in the study area. During northwesterly wind conditions, the influence of the Mackenzie River plume is negligible. Our results highlight the potential of high spatial resolution Landsat imagery to detect small-scale hydrodynamic processes, but also show the need to specifically tune optical models for Arctic nearshore environments.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...