ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI  (1)
  • Taylor & Francis  (1)
  • Informa UK Limited
  • 1
    Publication Date: 2016-06-14
    Description: Global ocean precipitation is an important part of the water cycle in the climate system. A number of efforts have been undertaken to acquire reliable estimates of precipitation over the oceans based on remote sensing and reanalysis modelling. However, validation of these data is still a challenging task, mainly due to a lack of suitable in situ measurements of precipitation over the oceans. In this study, validation of the satellite-based Hamburg Ocean Atmosphere Parameters and fluxes from Satellite data (HOAPS) climatology was conducted with in situ measurements by ship rain gauges over the Baltic Sea from 1995 to 1997. The ship rain gauge data are point-to-area collocated against the HOAPS data. By choosing suitable collocation parameters, a detection rate of up to about 70% is achieved. Investigation of the influence of the synoptic situation on the detectability shows that HOAPS performs better for stratiform than for convective precipitation. The number of collocated data is not sufficient to validate precipitation rates. Thus, precipitation rates were analysed by applying an interpolation scheme based on the Kriging method to both data sets. It was found that HOAPS underestimates precipitation by about 10%, taking into account that precipitation rates below 0.3 mm h−1 cannot be detected from satellite information.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-31
    Description: The satellite-derived HOAPS (Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data) precipitation estimates have been validated against in-situ precipitation measurements from optical disdrometers, available from OceanRAIN (Ocean Rainfall And Ice-phase precipitation measurement Network) over the open-ocean by applying a statistical analysis for binary estimates. In addition to using directly collocated pairs of data, collocated data were merged within a certain temporal and spatial threshold into single events, according to the observation times. Although binary statistics do not show perfect agreement, simulations of areal estimates from the observations themselves indicate a reasonable performance of HOAPS to detect rain. However, there are deficits at low and mid-latitudes. Weaknesses also occur when analyzing the mean precipitation rates; HOAPS underperforms in the area of the intertropical convergence zone, where OceanRAIN observations show the highest mean precipitation rates. Histograms indicate that this is due to an underestimation of the frequency of moderate to high precipitation rates by HOAPS, which cannot be explained by areal averaging.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...