ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: Fresh produce within vertical farming systems grows vertically in different layers stacked atop each other, thus allowing for the efficient use of space. As the environment in vertical farming systems is completely controlled, neither sunlight nor soil is necessary. On the one hand, vertical farming may help to provide a healthy diet for the growing global population because it has a greater crop yield per square meter used than conventional farming; moreover, it can offer the opportunity to grow food in climatically disadvantaged areas. On the other hand, growth conditions may be perceived as unnatural and the entire vertical farming system as unsustainable. Therefore, understanding the consumers’ acceptance of vertical farming systems is important. This study is the first work to provide insights into consumers’ acceptance of three different vertical farming systems. Data are collected through an online survey of 482 consumers in Germany in February 2018. Drivers of consumer acceptance of vertical farming systems are identified through structural equation modelling. The results indicate that perceived sustainability is the major driver of consumer acceptance of vertical farming systems. The larger the system, the higher the likelihood that it will be considered as sustainable. Obviously, consumers perceive something like ecologies of scale.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: The Vehicle Routing Problem (VRP) in its manifold variants is widely discussed in scientific literature. We investigate related optimization models and solution methods to determine the state of research for vehicle routing attributes and their combinations. Most of these approaches are idealized and focus on single problem-tailored routing applications. Addressing this research gap, we present a customizable VRP for optimized road transportation embedded into a Decision Support System (DSS). It integrates various model attributes and handles a multitude of real-world routing problems. In the context of urban logistics, practitioners of different industries and researchers are assisted in efficient route planning that allows for minimizing driving distances and reducing vehicle emissions. Based on the design science research methodology, we evaluate the DSS with computational benchmarks and real-world simulations. Results indicate that our developed DSS can compete with problem-tailored algorithms. With our solution-oriented DSS as final artifact, we contribute to an enhanced economic and environmental sustainability in urban logistic applications.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...