ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 123 (2018): 2069-2089, doi:10.1002/2017JB015138.
    Description: Accurately quantifying the amount of naturally occurring gas hydrate in marine and permafrost environments is important for assessing its resource potential and understanding the role of gas hydrate in the global carbon cycle. Electrical resistivity well logs are often used to calculate gas hydrate saturations, Sh, using Archie's equation. Archie's equation, in turn, relies on an empirical saturation parameter, n. Though n = 1.9 has been measured for ice‐bearing sands and is widely used within the hydrate community, it is highly questionable if this n value is appropriate for hydrate‐bearing sands. In this work, we calibrate n for hydrate‐bearing sands from the Canadian permafrost gas hydrate research well, Mallik 5L‐38, by establishing an independent downhole Sh profile based on compressional‐wave velocity log data. Using the independently determined Sh profile and colocated electrical resistivity and bulk density logs, Archie's saturation equation is solved for n, and uncertainty is tracked throughout the iterative process. In addition to the Mallik 5L‐38 well, we also apply this method to two marine, coarse‐grained reservoirs from the northern Gulf of Mexico Gas Hydrate Joint Industry Project: Walker Ridge 313‐H and Green Canyon 955‐H. All locations yield similar results, each suggesting n ≈ 2.5 ± 0.5. Thus, for the coarse‐grained hydrate bearing (Sh 〉 0.4) of greatest interest as potential energy resources, we suggest that n = 2.5 ± 0.5 should be applied in Archie's equation for either marine or permafrost gas hydrate settings if independent estimates of n are not available.
    Description: DOE Grant Number: DE‐FE0023919; Gas Hydrate Project of the U.S. Geological Survey's Coastal and Marine Geology Program
    Description: 2018-08-17
    Keywords: Gas hydrate ; Resistivity ; Velocity ; Hydrate saturation ; Mallik ; Gulf of Mexico
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 123 (2018): 5495-5514, doi:10.1029/2018JB015872.
    Description: Fines, defined here as grains or particles, less than 75 μm in diameter, exist nearly ubiquitously in natural sediment, even those classified as coarse. Macroscopic sediment properties, such as compressibility, which relates applied effective stress to the resulting sediment deformation, depend on the fabric of fines. Unlike coarse grains, fines have sizes and masses small enough to be more strongly influenced by electrical interparticle forces than by gravity. These electrical forces acting through pore fluids are influenced by pore fluid chemistry changes. Macroscopic property dependence on pore fluid chemistry must be accounted for in sediment studies involving subsurface flow and sediment stability analyses, as well as in engineered flow situations such as groundwater pollutant remediation, hydrocarbon migration, or other energy resource extraction applications. This study demonstrates how the liquid limit‐based electrical sensitivity index can be used to predict sediment compressibility changes due to pore fluid chemistry changes. Laboratory tests of electrical sensitivity, sedimentation, and compressibility illustrate mechanisms linking microscale and macroscale processes for selected pure, end‐member fines. A specific application considered here is methane extraction via depressurization of gas hydrate‐bearing sediment, which causes a dramatic pore water salinity drop concurrent with sediment being compressed by the imposed effective stress increase.
    Description: DOI U.S. Geological Survey (USGS); U.S. Department of Energy (DOE) Grant Numbers: DE‐FE00‐28966, DE‐FE00‐26166
    Description: 2019-01-17
    Keywords: Fine‐grained sediment fabric ; Electrical sensitivity ; Pore‐fluid chemistry ; Sedimentation ; Compressibility ; Methane hydrate
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...