ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 1638–1681, doi:10.1002/2014JC010245.
    Description: Field observations from the spring of 2008 on the Louisiana shelf were used to elucidate the mechanisms of wave energy dissipation over a muddy seafloor. After a period of high discharge from the Atchafalaya River, acoustic measurements showed the presence of 20 cm thick mobile fluid-mud layers during and after wave events. While total wave energy dissipation (D) was greatest during the high energy periods, these periods had relatively low normalized attenuation rates (κ = Dissipation/Energy Flux). During declining wave-energy conditions, as the fluid-mud layer settled, the attenuation process became more efficient with high κ and low D. The transition from high D and low κ to high κ and low D was caused by a transition from turbulent to laminar flow in the fluid-mud layer as measured by a Pulse-coherent Doppler profiler. Measurements of the oscillatory boundary layer velocity profile in the fluid-mud layer during laminar flow reveal a very thick wave boundary layer with curvature filling the entire fluid-mud layer, suggesting a kinematic viscosity 2–3 orders of magnitude greater than that of clear water. This high viscosity is also consistent with a high wave-attenuation rates measured by across-shelf energy flux differences. The transition to turbulence was forced by instabilities on the lutocline, with wavelengths consistent with the dispersion relation for this two-layer system. The measurements also provide new insight into the dynamics of wave-supported turbidity flows during the transition from a laminar to turbulent fluid-mud layer.
    Description: This work was supported by Office of Naval Research Award N00014-06-1–0718, which was part of the ONR Multidisciplinary University Research Initiative (MUD-MURI): entitled ‘‘Mechanisms of Fluid-Mud Interactions Under Waves.’’ Additional support was provided by National Science Foundation grant 1059914.
    Description: 2015-09-19
    Keywords: Fluid mud ; Wave dissipation ; Laminar and turbulent wave boundary layers ; Lutocline instabilities ; Wave-supported turbidity flows
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 123 (2018): 6779-6799, doi:10.1029/2017JC013625.
    Description: Observations of water levels, waves, currents, and bathymetry collected for a month at an unstratified tidal inlet with a shallow (1 to 2 m deep) ebb shoal are used to evaluate the asymmetry in flows and dynamics owing to inertia and waves. Along‐channel currents ranged from −1.5 to 0.6 m/s (positive inland) inside the main (3 to 5 m deep) channel crossing the ebb shoal. Net discharge is negligible, and ebb dominance of the channel flows is owing to inflow and outflow asymmetries near the inlet mouth. Offshore wave heights ranged from 0.5 to 2.5 m. During moderate to large wave events (offshore significant wave heights 〉1.2 m), wave forcing enhanced onshore mass flux near the shoal edge and inside the inlet, leading to reduced ebb flow dominance. Momentum balances estimated with the water depths, currents, and waves simulated with a quasi 3‐D numerical model reproduce the momentum balances estimated from the observations reasonably well. Both observations and simulations suggest that ebb‐dominant bottom stresses are balanced by the ebb‐dominant pressure gradient and the tidally asymmetric inertia, which is a sink (source) of momentum on flood (ebb). Simulations with and without waves suggest that waves drive local and nonlocal changes in the water levels and flows. Specifically, breaking waves at the offshore edge of the ebb shoal induce setup and partially block the ebb jet (local effects), which leads to a more onshore‐directed mass flux, changes to the advection across the ebb shoal, and increased water levels inside the inlet mouth (nonlocal effects).
    Description: WHOI Coastal Ocean Institute Student Research; Office of the Assistant Secretary of Defense for Research and Engineering; National Defense Science and Engineering; National Science Foundation; Office of Naval Research
    Description: 2019-03-22
    Keywords: Inlets ; Waves ; Inertia ; Tidal asymmetry ; Ebb shoal
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 118 (2013): 3202–3220, doi:10.1002/jgrc.20241.
    Description: A comprehensive database of existing (since 1954) field and laboratory measurements of ripple geometry is compiled and combined with newly collected field data to examine the performance of ripple equilibrium predictors. Reanalysis of this enlarged ripple geometry data set reveals that ripples formed from monochromatic waves scale differently than ripples formed from random waves for many existing ripple predictors. Our analysis indicates that ripple wavelengths from the two data sets collapse into a single scaling when the semiorbital excursion and sediment grain diameter are used as normalizing factors. Ripple steepness remains relatively constant for both regular and irregular wave conditions, and it only slightly increases for shorter ripple wavelengths. These findings allowed for the development of a new equilibrium ripple predictor suitable for application in a wide range of wave and sediment conditions.
    Description: Financial support for this work was provided by the National Science Foundation (NSF awards OCE-0451989 and OCE-0535893) and by the South Carolina Coastal Erosion Project, a cooperative study supported by the U.S. Geological Survey and the South Carolina Sea Grant Consortium (Sea Grant Project R/CP-11).
    Description: 2013-12-28
    Keywords: Wave-induced ripples ; Equilibrium ripples ; Ripple height ; Ripple wavelength ; Ripple steepness
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 5698–5709, doi:10.1002/2015JC010872.
    Description: Recent field investigations of the damping of ocean surface waves over fluid muds have revealed waves on the interface between the thin layer of fluid mud and the overlying much thicker column of clear water, accompanied by bed forms on the erodible seabed beneath the fluid mud. The frequencies and wavelengths of the observed interfacial waves are qualitatively consistent with the linear dispersion relationship for long interfacial waves, but the forcing mechanism is not known. To understand the forcing, a linear model is proposed, based on the layer-averaged hydrostatic equations for the fluid mud, together with the Meyer-Peter-Mueller equation for the sediment transport within the underlying seabed, both subject to oscillatory forcing by the surface waves. If the underlying seabed is nonerodible and flat, the model indicates parametric instability to interfacial waves, but the threshold for instability is not met by the observations. If the underlying seabed is erodible, the model indicates that perturbations to the seabed elevation in the presence of the oscillatory forcing create interfacial waves, which in turn produce stresses within the fluid mud that force a net transport of sediment within the seabed toward the bed form crests, thus causing growth of both bed forms and interfacial waves. The frequencies, wavelengths, and growth rates are in qualitative agreement with the observations. A competition between mixing created by the interfacial waves and gravitational settling might control the thickness, density, and viscosity of the fluid muds during periods of strong forcing.
    Description: This study was supported by the Coastal Geodynamics Program at the Office of Naval Research and by the Physical Oceanography Program at the National Science Foundation.
    Keywords: Sediment transport ; Fluid mud ; Instability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 123 (2018): 2494-2512, doi:10.1002/2017JC013252.
    Description: Direct covariance observations of the mean flow Reynolds stress and sonar images of the seafloor collected on a wave‐exposed inner continental shelf demonstrate that the drag exerted by the seabed on the overlying flow is consistent with boundary layer models for wave‐current interaction, provided that the orientation and anisotropy of the bed roughness are appropriately quantified. Large spatial and temporal variations in drag result from nonequilibrium ripple dynamics, ripple anisotropy, and the orientation of the ripples relative to the current. At a location in coarse sand characterized by large two‐dimensional orbital ripples, the observed drag shows a strong dependence on the relative orientation of the mean current to the ripple crests. At a contrasting location in fine sand, where more isotropic sub‐orbital ripples are observed, the sensitivity of the current to the orientation of the ripples is reduced. Further, at the coarse site under conditions when the currents are parallel to the ripple crests and the wave orbital diameter is smaller than the wavelength of the relic orbital ripples, the flow becomes hydraulically smooth. This transition is not observed at the fine site, where the observed wave orbital diameter is always greater than the wavelength of the observed sub‐orbital ripples. Paradoxically, the dominant along‐shelf flows often experience lower drag at the coarse site than at the fine site, despite the larger ripples, highlighting the complex dynamics controlling drag in wave‐exposed environments with heterogeneous roughness.
    Description: National Science Foundation Ocean Sciences Division Award Grant Number: 1356060; U.S. Geological Survey Coastal and Marine Geology Program
    Description: 2018-09-26
    Keywords: Reynolds stress ; Drag ; Ripples
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...