ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • John Wiley & Sons  (2)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 118 (2013): 2052–2066, doi:10.1002/jgrc.20144.
    Description: This study considered cross-frontal exchange as a possible mechanism for the observed along-front freshening and cooling between the 27.0 and 27.3 kg m − 3 isopycnals north of the Subantarctic Front (SAF) in the southeast Pacific Ocean. This isopycnal range, which includes the densest Subantarctic Mode Water (SAMW) formed in this region, is mostly below the mixed layer, and so experiences little direct air-sea forcing. Data from two cruises in the southeast Pacific were examined for evidence of cross-frontal exchange; numerous eddies and intrusions containing Polar Frontal Zone (PFZ) water were observed north of the SAF, as well as a fresh surface layer during the summer cruise that was likely due to Ekman transport. These features penetrated north of the SAF, even though the potential vorticity structure of the SAF should have acted as a barrier to exchange. An optimum multiparameter (OMP) analysis incorporating a range of observed properties was used to estimate the cumulative cross-frontal exchange. The OMP analysis revealed an along-front increase in PFZ water fractional content in the region north of the SAF between the 27.1 and 27.3 kg m − 3 isopycnals; the increase was approximately 0.13 for every 15° of longitude. Between the 27.0 and 27.1 kg m − 3 isopycnals, the increase was approximately 0.15 for every 15° of longitude. A simple bulk calculation revealed that this magnitude of cross-frontal exchange could have caused the downstream evolution of SAMW temperature and salinity properties observed by Argo profiling floats.
    Description: NSF Ocean Sciences grant OCE-0327544 supported L.D.T., T.K.C., and J.H. and funded the two research cruises; NSF Ocean Sciences grant OCE-0850869 funded part of the analysis. BMS’s contribution to this work was undertaken as part of the Australian Climate Change Science Program, funded jointly by the Department of Climate Change and CSIRO.
    Description: 2013-10-23
    Keywords: Subantarctic Mode Water ; Southern Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 119 (2014): 1383–1419, doi:10.1002/2013JC008979.
    Description: This article (1) reviews and clarifies the basic physics underpinning finescale parameterizations of turbulent dissipation due to internal wave breaking and (2) provides advice on the implementation of the parameterizations in a way that is most consistent with the underlying physics, with due consideration given to common instrumental issues. Potential biases in the parameterization results are discussed in light of both (1) and (2), and illustrated with examples in the literature. The value of finescale parameterizations for studies of the large-scale ocean circulation in the presence of common biases is assessed. We conclude that the parameterizations can contribute significantly to the resolution of large-scale circulation problems associated with plausible ranges in the rates of turbulent dissipation and diapycnal mixing spanning an order of magnitude or more.
    Description: K.L.P.’s salary support for this analysis was provided by Woods Hole Oceanographic Institution bridge support funds and NSF grant OCE- 0926848. A.C.N.G. was supported by a NERC Advanced Research Fellowship (NE/C517633/1), T.N.H. by a National Oceanography Centre, Southampton PhD studentship, B.M.S. by the Australian Climate Change Science Program and CSIRO Wealth from Ocean National Research Flagship, and S.W. by Australian Research Council grants DE120102927 and CE110001028.
    Description: 2014-08-25
    Keywords: Mixing parameterizations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...