ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 41 (2014): 8619–8626, doi:10.1002/2014GL062107.
    Description: We describe the recent occurrence of a region of diminished sea ice cover or “notch” offshore of the Kangerdlugssuaq Fiord, the site of the largest tidewater glacier along Greenland's southeast coast. The notch's location is consistent with a topographically forced flux of warm water toward the fiord, and the decrease of the sea ice cover is shown to be associated with a regional warming of the upper ocean that began in the mid-1990s. Sea ice in the vicinity of the notch also exhibits interannual variability that is shown to be associated with a seesaw in surface temperature and sea ice between southeast and northeast Greenland that is not describable solely in terms of the North Atlantic Oscillation. We therefore argue that other modes of atmospheric variability, including the Lofoten Low, are required to fully document the changes to the climate that are occurring along Greenland's east coast.
    Description: G.W.K.M. was supported by the Natural Sciences and Engineering Research Council of Canada. F.S. and M.O. were supported by NSF OCE 1130008 and NASA NNX13AK88G.
    Description: 2015-06-02
    Keywords: Greenland ; Sea ice ; Interannual variability ; Lofoten Low ; Icelandic Low
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/msword
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 121 (2016): 6978–6992, doi:10.1002/2015JC011607.
    Description: Hydrographic data from the Labrador Sea collected in February–March 1997, together with atmospheric reanalysis fields, are used to explore relationships between the air-sea fluxes and the observed mixed-layer depths. The strongest winds and highest heat fluxes occurred in February, due to the nature and tracks of the storms. While greater numbers of storms occurred earlier and later in the winter, the storms in February followed a more organized track extending from the Gulf Stream region to the Irminger Sea where they slowed and deepened. The canonical low-pressure system that drives convection is located east of the southern tip of Greenland, with strong westerly winds advecting cold air off the ice edge over the warm ocean. The deepest mixed layers were observed in the western interior basin, although the variability in mixed-layer depth was greater in the eastern interior basin. The overall trend in mixed-layer depth through the winter in both regions of the basin was consistent with that predicted by a 1-D mixed-layer model. We argue that the deeper mixed layers in the west were due to the enhanced heat fluxes on that side of the basin as opposed to oceanic preconditioning.
    Description: National Science Foundation (RP); Natural Science and Engineering Research Council of Canada Grant Number: OCE-1259618
    Description: 2017-03-22
    Keywords: Labrador Sea ; Convection ; Impact of storms ; Storm tracks ; Mixed layers
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 41 (2014): 3628–3635, doi:10.1002/2014GL059940.
    Description: The Labrador Sea is a region of climatic importance as a result of the occurrence of oceanic wintertime convection, a process that is integral to the Atlantic Meridional Overturning Circulation. This process requires large air-sea heat fluxes that result in a loss of surface buoyancy, triggering convective overturning of the water column. The Labrador Sea wintertime turbulent heat flux maximum is situated downstream of the ice edge, a location previously thought to be causal. Here we show that there is considerable similarity in the characteristics of the regional mean atmospheric circulation and high heat flux events over the Labrador Sea during early winter, when the ice is situated to the north, and midwinter, when it is near the region of maximum heat loss. This suggests that other factors, including the topography of the nearby upstream and downstream landmasses, contribute to the location of the heat flux maximum.
    Description: G.W.K.M. was supported by the Natural Sciences and Engineering Research Council of Canada. R.S.P. was supported by grant OCE-085041 from the U.S. National Science Foundation. I. A.R. would like to acknowledge support from NERC grant NE/I005293/1. K.V. received funding from NACLIM, a project of the European Union Seventh Framework Programme under grant agreement 308299.
    Description: 2014-11-19
    Keywords: Air-sea interaction ; Oceanic convection ; Extratropical cyclones ; Flow distortion ; Polar meterorology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 42 (2015): 3011–3018, doi:10.1002/2015GL063550.
    Description: Southern Greenland is characterized by a number of low-level high wind speed weather systems that are the result of topographic flow distortion. These systems include barrier winds and katabatic flow that occur along its southeast coast. Global atmospheric reanalyses have proven to be important tools in furthering our understanding of these orographic winds and their role in the climate system. However, there is evidence that the mesoscale characteristics of these systems may be missed in these global products. Here we show that the Arctic System Reanalysis, a higher-resolution regional reanalysis, is able to capture mesoscale features of barrier winds and katabatic flow that are missed or underrepresented in ERA-I, a leading modern global reanalysis. This suggests that our understanding of the impact of these wind systems on the coupled-climate system can be enhanced through the use of higher-resolution regional reanalyses or model data.
    Description: 2015-10-19
    Keywords: Mesoscale meteorology ; Greenland ; Flow distortion ; Barrier winds ; Katabatic flow ; Air-sea-ice interaction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 121 (2016): 8434–8454, doi:10.1002/2016JC011890.
    Description: Using mooring time series from September 2008 to August 2012, together with ancillary atmospheric and satellite data sets, we quantify the seasonal variations of the shelfbreak jet in the Alaskan Beaufort Sea and explore connections to the occurrences of bowhead and beluga whales. Wind patterns during the 4 year study period are different from the long-term climatological conditions that the springtime peak in easterly winds shifted from May to June and the autumn peak was limited to October instead of extending farther into the fall. These changes were primarily due to the behavior of the two regional atmospheric centers of action, the Aleutian Low and Beaufort High. The volume transport of the shelfbreak jet, which peaks in the summer, was decomposed into a background (weak wind) component and a wind-driven component. The wind-driven component is correlated to the Pt. Barrow, AK alongcoast wind speed record although a more accurate prediction is obtained when considering the ice thickness at the mooring site. An upwelling index reveals that wind-driven upwelling is enhanced in June and October when storms are stronger and longer-lasting. The seasonal variation of Arctic cetacean occurrence is dominated by the eastward migration in spring, dictated by pack-ice patterns, and westward migration in fall, coincident with the autumn peak in shelfbreak upwelling intensity.
    Description: Support for the most recent deployments of the shelfbreak moorings was provided by grants ARC-0856244 and ARC-855828 from the Office of Polar Programs of the National Science Foundation. P.L. acknowledges the financial support of the China Scholarship Council.
    Description: 2017-06-02
    Keywords: Beaufort shelfbreak jet ; Wind-driven transport ; Water masses ; Upwelling ; Cetaceans
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...