ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Sediment transport  (2)
  • Shear structure/flows
  • Coastal flows
  • John Wiley & Sons  (2)
Sammlung
Verlag/Herausgeber
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 40 (2013): 5451–5455, doi:10.1002/2013GL057906.
    Beschreibung: Tropical Storms Irene and Lee in 2011 produced intense precipitation and flooding in the U.S. Northeast, including the Hudson River watershed. Sediment input to the Hudson River was approximately 2.7 megaton, about 5 times the long-term annual average. Rather than the common assumption that sediment is predominantly trapped in the estuary, observations and model results indicate that approximately two thirds of the new sediment remained trapped in the tidal freshwater river more than 1 month after the storms and only about one fifth of the new sediment reached the saline estuary. High sediment concentrations were observed in the estuary, but the model results suggest that this was predominantly due to remobilization of bed sediment. Spatially localized deposits of new and remobilized sediment were consistent with longer term depositional records. The results indicate that tidal rivers can intercept (at least temporarily) delivery of terrigenous sediment to the marine environment during major flow events.
    Beschreibung: This research was supported by grants from the Hudson Research Foundation (002/07A) and the National Science Foundation (1232928).
    Beschreibung: 2014-04-18
    Schlagwort(e): Sediment transport ; Tidal river ; Estuary ; Sediment trapping
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Format: application/msword
    Format: image/tiff
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Earth Surface 122 (2017): 2042–2063, doi:10.1002/2017JF004337.
    Beschreibung: Observations and a numerical model are used to characterize sediment transport in the tidal Hudson River. A sediment budget over 11 years including major discharge events indicates the tidal fresh region traps about 40% of the sediment input from the watershed. Sediment input scales with the river discharge cubed, while seaward transport in the tidal river scales linearly, so the tidal river accumulates sediment during the highest discharge events. Sediment pulses associated with discharge events dissipate moving seaward and lag the advection speed of the river by a factor of 1.5 to 3. Idealized model simulations with a range of discharge and settling velocity were used to evaluate the trapping efficiency, transport rate, and mean age of sediment input from the watershed. The seaward transport of suspended sediment scales linearly with discharge but lags the river velocity by a factor that is linear with settling velocity. The lag factor is 30–40 times the settling velocity (mm s−1), so transport speeds vary by orders of magnitude from clay (0.01 mm s−1) to coarse silt (1 mm s−1). Deposition along the tidal river depends strongly on settling velocity, and a simple advection-reaction equation represents the loss due to settling on depositional shoals. The long-term discharge record is used to represent statistically the distribution of transport times, and time scales for settling velocities of 0.1 mm s−1 and 1 mm s−1 range from several months to several years for transport through the tidal river and several years to several decades through the estuary.
    Beschreibung: Hudson River Foundation Grant Number: 004/13A; National Science Foundation Grant Number: 1325136
    Beschreibung: 2018-05-02
    Schlagwort(e): Tidal river ; Sediment age ; Trapping efficiency ; Estuary ; Sediment transport
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...