ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • COPERNICUS GESELLSCHAFT MBH  (1)
  • John Wiley & Sons  (1)
  • Springer Nature  (1)
Sammlung
Verlag/Herausgeber
Erscheinungszeitraum
  • 1
  • 2
    Publikationsdatum: 2017-01-24
    Beschreibung: Advances in trace gas analysis allow localised, non-atmospheric features to be resolved in ice cores, superimposed on the coherent atmospheric signal. These highfrequency signals could not have survived the low-pass filter effect that gas diffusion in the firn exerts on the atmospheric history and therefore do not result from changes in the atmospheric composition at the ice sheet surface. Using continuous methane (CH4) records obtained from five polar ice cores, we characterise these non-atmospheric signals and explore their origin. Isolated samples, enriched in CH4 in the Tunu13 (Greenland) record are linked to the presence of melt layers. Melting can enrich the methane concentration due to a solubility effect, but we find that an additional in situ process is required to generate the full magnitude of these anomalies. Furthermore, in all the ice cores studied there is evidence of reproducible, decimetre-scale CH4 variability. Through a series of tests, we demonstrate that this is an artifact of layered bubble trapping in a heterogeneousdensity firn column; we use the term “trapping signal” for this phenomenon. The peak-to-peak amplitude of the trapping signal is typically 5 ppb, but may exceed 40 ppb. Signal magnitude increases with atmospheric CH4 growth rate and seasonal density contrast, and decreases with accumulation rate. Significant annual periodicity is present in the CH4 variability of two Greenland ice cores, suggesting that layered gas trapping at these sites is controlled by regular, seasonal variations in the physical properties of the firn. Future analytical campaigns should anticipate high-frequency artifacts at high-melt ice core sites or during time periods with high atmospheric CH4 growth rate in order to avoid misinterpretation of such features as past changes in atmospheric composition.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Atmospheres 119 (2014): 9168–9182, doi:10.1002/2013JD020720.
    Beschreibung: The sources and transport pathways of aerosol species in Antarctica remain uncertain, partly due to limited seasonally resolved data from the harsh environment. Here, we examine the seasonal cycles of major ions in three high-accumulation West Antarctic ice cores for new information regarding the origin of aerosol species. A new method for continuous acidity measurement in ice cores is exploited to provide a comprehensive, charge-balance approach to assessing the major non-sea-salt (nss) species. The average nss-anion composition is 41% sulfate (SO42−), 36% nitrate (NO3−), 15% excess-chloride (ExCl−), and 8% methanesulfonic acid (MSA). Approximately 2% of the acid-anion content is neutralized by ammonium (NH4+), and the remainder is balanced by the acidity (Acy ≈ H+ − HCO3−). The annual cycle of NO3− shows a primary peak in summer and a secondary peak in late winter/spring that are consistent with previous air and snow studies in Antarctica. The origin of these peaks remains uncertain, however, and is an area of active research. A high correlation between NH4+ and black carbon (BC) suggests that a major source of NH4+ is midlatitude biomass burning rather than marine biomass decay, as previously assumed. The annual peak in excess chloride (ExCl−) coincides with the late-winter maximum in sea ice extent. Wintertime ExCl− is correlated with offshore sea ice concentrations and inversely correlated with temperature from nearby Byrd station. These observations suggest that the winter peak in ExCl− is an expression of fractionated sea-salt aerosol and that sea ice is therefore a major source of sea-salt aerosol in the region.
    Beschreibung: This work was supported by grants from the NSF Antarctic Program (0632031 and 1142166), NSF-MRI (1126217), the NASA Cryosphere Program (NNX10AP09G), and by an award from the Department of Energy Office of Science Graduate Fellowship Program (DOE SCGF) to ASC.
    Beschreibung: 2015-01-21
    Schlagwort(e): Antarctica ; Ice cores ; Biomass burning ; Sea ice ; Nitrate ; Acidity
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...