ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Inverse method  (1)
  • Inverse modeling  (1)
  • John Wiley & Sons  (2)
  • 2015-2019  (2)
Collection
Publisher
  • John Wiley & Sons  (2)
Years
  • 2015-2019  (2)
Year
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 30 (2015): 1470-1489, doi:10.1002/2014PA002743.
    Description: The ocean circulation modifies mixed layer (ML) tracer signals as they are communicated to the deep ocean by advection and mixing. We develop and apply a procedure for using tracer signals observed “upstream” (by planktonic foraminifera) and “downstream” (by benthic foraminifera) to constrain how tracer signals are modified by the intervening circulation and, by extension, to constrain properties of that circulation. A history of ML equilibrium calcite δ18O (δ18Oc) spanning the last deglaciation is inferred from a least-squares fit of eight benthic foraminiferal δ18Oc records to Green's function estimated for the modern ocean circulation. Disagreements between this history and the ML history implied by planktonic records would indicate deviations from the modern circulation. No deviations are diagnosed because the two estimates of ML δ18Oc agree within their uncertainties, but we suggest data collection and modeling procedures useful for inferring circulation changes in future studies. Uncertainties of benthic-derived ML δ18Oc are lowest in the high-latitude regions chiefly responsible for ventilating the deep ocean; additional high-resolution planktonic records constraining these regions are of particular utility. Benthic records from the Southern Ocean, where data are sparse, appear to have the most power to reduce uncertainties in benthic-derived ML δ18Oc. Understanding the spatiotemporal covariance of deglacial ML δ18Oc will also improve abilities of δ18Oc records to constrain deglacial circulation.
    Description: 2016-05-12
    Keywords: Oxygen isotopes ; Inverse modeling ; Deglaciation ; Tracers ; Ocean circulation ; Green's function
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography and Paleoclimatology 33 (2018): 128-151, doi:10.1002/2017PA003174.
    Description: We present a synthesis of 1,361 deep‐sea radiocarbon data spanning the past 40 kyr and computed (for 14C‐dated records) from the same calibration to atmospheric 14C. The most notable feature in our compilation is a long‐term Δ14C decline in deep oceanic basins over the past 25 kyr. The Δ14C decline mirrors the drop in reconstructed atmospheric Δ14C, suggesting that it may reflect a decrease in global 14C inventory rather than a redistribution of 14C among different reservoirs. Motivated by this observation, we explore the extent to which the deep water Δ14C data jointly require changes in basin‐scale ventilation during the last deglaciation, based on the fit of a 16‐box model of modern ocean ventilation to the deep water Δ14C records. We find that the fit residuals can largely be explained by data uncertainties and that the surface water Δ14C values producing the fit are within the bounds provided by contemporaneous values of atmospheric and deep water Δ14C. On the other hand, some of the surface Δ14C values in the northern North Atlantic and the Southern Ocean deviate from the values expected from atmospheric 14CO2 and CO2 concentrations during the Heinrich Stadial 1 and the Bølling‐Allerød. The possibility that deep water Δ14C records reflect some combination of changes in deep circulation and surface water reservoir ages cannot be ruled out and will need to be investigated with a more complete model.
    Description: U.S. National Science Foundation Grant Number: OCE‐1301907
    Description: 2018-07-08
    Keywords: Last deglaciation ; Ocean ventilation ; Data synthesis ; Radiocarbon ; Inverse method
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...