ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AMER GEOPHYSICAL UNION  (1)
  • International Glaciological Society  (1)
  • American Meteorological Society (AMS)
Collection
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    International Glaciological Society
    In:  Annals of Glaciology, 56 (69). pp. 295-306.
    Publication Date: 2016-04-26
    Description: The first stage of sea-ice formation is often grease ice, a mixture of sea water and frazil ice crystals. Over time, grease ice typically congeals first to pancake ice floes and then to a solid sea-ice cover. Grease ice is commonly not explicitly simulated in basin-scale sea-ice ocean models, though it affects oceanic heat loss and ice growth and is expected to play a greater role in a more seasonally icecovered Arctic Ocean. We present an approach to simulate the grease-ice layer with, as basic properties, the surface being at the freezing point, a frazil ice volume fraction of 25%, and a negligible change in the surface heat flux compared to open water. The latter governs grease-ice production, and a gradual transition to solid sea ice follows, with ∼50% of the grease ice solidifying within 24 hours. The new parameterization delays lead closing by solid ice formation, enhances oceanic heat loss in fall and winter, and produces a grease-ice layer that is variable in space and time. Results indicate a 10-30% increase in mean winter Arctic Ocean heat loss compared to a standard simulation, with instant lead closing leading to significantly enhanced ice growth.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-11-04
    Description: Multimodel Arctic Ocean “climate response function” experiments are analyzed in order to explore the effects of anomalous wind forcing over the Greenland Sea (GS) on poleward ocean heat transport, Atlantic Water (AW) pathways, and the extent of Arctic sea ice. Particular emphasis is placed on the sensitivity of the AW circulation to anomalously strong or weak GS winds in relation to natural variability, the latter manifested as part of the North Atlantic Oscillation. We find that anomalously strong (weak) GS wind forcing, comparable in strength to a strong positive (negative) North Atlantic Oscillation index, results in an intensification (weakening) of the poleward AW flow, extending from south of the North Atlantic Subpolar Gyre, through the Nordic Seas, and all the way into the Canadian Basin. Reconstructions made utilizing the calculated climate response functions explain ∼50% of the simulated AW flow variance; this is the proportion of variability that can be explained by GS wind forcing. In the Barents and Kara Seas, there is a clear relationship between the wind‐driven anomalous AW inflow and the sea ice extent. Most of the anomalous AW heat is lost to the atmosphere, and loss of sea ice in the Barents Sea results in even more heat loss to the atmosphere, and thus effective ocean cooling. Release of passive tracers in a subset of the suite of models reveals differences in circulation patterns and shows that the flow of AW in the Arctic Ocean is highly dependent on the wind stress in the Nordic Seas.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...