ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • National Academy of Sciences  (2)
  • Inter Research  (1)
  • 1
    Publication Date: 2015-02-23
    Description: No records exist to evaluate long-term pH dynamics in high-latitude oceans, which have the greatest probability of rapid acidification from anthropogenic CO2 emissions. We reconstructed both seasonal variability and anthropogenic change in seawater pH and temperature by using laser ablation high-resolution 2D images of stable boron isotopes (δ11B) on a long-lived coralline alga that grew continuously through the 20th century. Analyses focused on four multiannual growth segments. We show a long-term decline of 0.08 ± 0.01 pH units between the end of the 19th and 20th century, which is consistent with atmospheric CO2 records. Additionally, a strong seasonal cycle (∼0.22 pH units) is observed and interpreted as episodic annual pH increases caused by the consumption of CO2 during strong algal (kelp) growth in spring and summer. The rate of acidification intensifies from –0.006 ± 0.007 pH units per decade (between 1920s and 1960s) to –0.019 ± 0.009 pH units per decade (between 1960s and 1990s), and the episodic pH increases show a continuous shift to earlier times of the year throughout the centennial record. This is indicative of ecosystem shifts in shallow water algal productivity in this high-latitude habitat resulting from warming and acidification.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 489 . pp. 1-16.
    Publication Date: 2019-09-24
    Description: The notion that excess phosphorus (P) and high irradiance favour pelagic diazotrophy is difficult to reconcile with diazotroph behaviour in laboratory experiments and also with the observed distribution of N2-fixing Trichodesmium, e.g. in the relatively nitrogen (N)-rich North Atlantic Ocean. Nevertheless, this view currently provides the state-of-the-art framework to understand both past dynamics and future evolution of the oceanic fixed N inventory. In an attempt to provide a consistent theoretical underpinning for marine autotrophic N2 fixation we derive controls of diazotrophy from an optimality-based model that accounts for phytoplankton growth and N2 fixation. Our approach differs from existing work in that conditions favourable for diazotrophy are not prescribed but emerge, indirectly, from trade-offs among energy and cellular resource requirements for the acquisition of P, N, and carbon. Our model reproduces laboratory data for a range of ordinary phytoplankton species and Trichodesmium. The model predicts that (1) the optimal strategy for facultative diazotrophy is switching between N2 fixation and using dissolved inorganic nitrogen (DIN) at a threshold DIN concentration; (2) oligotrophy, especially in P and under high light, favours diazotrophy; (3) diazotrophy is compatible with DIN:DIP supply ratios well above Redfield proportions; and (4) communities of diazotrophs competing with ordinary phytoplankton decouple emerging ambient and supply DIN:DIP ratios. Our model predictions appear in line with major observed patterns of diazotrophy in the ocean. The predicted importance of oligotrophy in P extends the present view of N2 fixation beyond a simple control by excess P in the surface ocean.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-09-20
    Description: No records exist to evaluate long-term pH dynamics in high-latitude oceans, which have the greatest probability of rapid acidification from anthropogenic CO2 emissions. We reconstructed both seasonal variability and anthropogenic change in seawater pH and temperature by using laser ablation high-resolution 2D images of stable boron isotopes (δ11B) on a long-lived coralline alga that grew continuously through the 20th century. Analyses focused on four multiannual growth segments. We show a long-term decline of 0.08 ± 0.01 pH units between the end of the 19th and 20th century, which is consistent with atmospheric CO2 records. Additionally, a strong seasonal cycle (∼0.22 pH units) is observed and interpreted as episodic annual pH increases caused by the consumption of CO2 during strong algal (kelp) growth in spring and summer. The rate of acidification intensifies from –0.006 ± 0.007 pH units per decade (between 1920s and 1960s) to –0.019 ± 0.009 pH units per decade (between 1960s and 1990s), and the episodic pH increases show a continuous shift to earlier times of the year throughout the centennial record. This is indicative of ecosystem shifts in shallow water algal productivity in this high-latitude habitat resulting from warming and acidification.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...