ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-09-21
    Description: Using a global climate model, Amazonian deforestation experiments are conducted perturbing 1, 9, 25, 81 and 121 grid points, each with 5 ensemble members. All experiments show warming and drying over Amazonia. The impact of deforestation on temperature, averaged either over the affected area or a wider area, decreases by a factor of two as the scale of the perturbation increases from 1 to 121 grid points. This is associated with changes in the surface energy balance and consequential impacts on the atmosphere above the regions deforested. For precipitation, as the scale of deforestation increases from 9 to 121 grid points, the reduction in rainfall over the perturbed area decreases from ∼1.5 to ∼1 mm d −1 . However, if the surrounding area is considered and large deforestation perturbations made, compensatory increases in precipitation occur such that there is little net change. This is largely associated with changes in horizontal advection of moisture. Disagreements ...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-10-14
    Description: Land surface models (LSMs) must accurately simulate observed energy and water fluxes during droughts in order to provide reliable estimates of future water resources. We evaluated 8 different LSMs (14 model versions) for simulating evapotranspiration (ET) during periods of evaporative drought (Edrought) across six flux tower sites. Using an empirically defined Edrought threshold (a decline in ET below the observed 15th percentile), we show that LSMs simulated 58 Edrought days per year, on average, across the six sites, ∼3 times as many as the observed 20 d. The simulated Edrought magnitude was ∼8 times greater than observed and twice as intense. Our findings point to systematic biases across LSMs when simulating water and energy fluxes under water-stressed conditions. The overestimation of key Edrought characteristics undermines our confidence in the models’ capability in simulating realistic drought responses to climate change and has wider implications for phenomena sensitive ...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-28
    Description: Irrigation is known to influence regional climate but most studies forecast and simulate irrigation with offline (i.e. land only) models. Using south eastern Australia as a test bed, we demonstrate that irrigation demand is fundamentally different between land only and land–atmosphere simulations. While irrigation only has a small impact on maximum temperature, the semi-arid environment experiences near surface moistening in coupled simulations over the irrigated regions, a feedback that is prevented in offline simulations. In land only simulations that neglect the local feedbacks, the simulated irrigation demand is 25% higher and the standard deviation of the mean irrigation rate is 60% smaller. These local-scale irrigation-driven feedbacks are not resolved in coarse-resolution climate models implying that use of these tools will overestimate irrigation demand. Future studies of irrigation demand must therefore account for the local land–atmosphere interactions by using coupled...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-02-06
    Description: The Paris Agreement limits global average temperature rise to 2 °C and commits to pursuing efforts in limiting warming to 1.5 °C above pre-industrial levels. This will require rapid reductions in the emissions of greenhouse gases and the eventual decarbonisation of the global economy. Wind energy is an established technology to help achieve emissions reductions, with a cumulative global installed capacity of ~486 GW (2016). Focusing on Australia, we assess the future economic viability of wind energy using a 12-member ensemble of high-resolution regional climate simulations forced by Coupled Model Intercomparison Project (CMIP) output. We examine both near future (around 2030) and far future (around 2070) changes. Extractable wind power changes vary across the continent, though the most spatially coherent change is a small but significant decrease across southern regions. The cost of future wind energy generation, measured via the Levelised Cost of Energy (LCOE), increases negli...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-01-06
    Description: We used an Earth System Model that includes both nitrogen (N) and phosphorus (P) cycling to simulate the impacts of land-use and land-cover change (LULCC) for two representative concentration pathways (RCPs): a reforestation scenario (RCP4.5) and a deforestation scenario (RCP8.5). For each RCP, we performed simulations with and without LULCC using the carbon (C only) mode or including the full C, N and P cycles (CNP). We show, for the first time, that inclusion of N and P cycling reduces both the carbon uptake from reforestation in RCP4.5 and the carbon emission from deforestation in RCP8.5. Specifically, carbon-nutrient interaction reduces carbon uptake in RCP4.5 from 55 Pg C (C only) to 21 Pg C (CNP), or the emissions in RCP8.5 from 72 Pg C (C only) to 56 Pg C (CNP). Most of those reductions result from much weaker responses of net primary production to CO 2 fertilization and climate change when carbon-nutrient interaction is taken into account, as compared to C only ...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...