ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-10-05
    Description: This paper is concerned with a class of linear impulsive delay differential equations. Asymptotic stability of analytic solutions of this kind of equations is studied by the property of delay differential equations without impulsive perturbations. New numerical methods for this kind of equations are constructed. The convergence and asymptotic stability of the methods for this kind of equations are studied.
    Print ISSN: 1110-757X
    Electronic ISSN: 1687-0042
    Topics: Mathematics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-01-01
    Description: Coking wastewater is characterized by poor biodegradability and high microorganism toxicity. Thus, it is difficult to meet Grade I of Integrated Wastewater Discharge Standard of China by biological treatment technology; specifically, COD cannot meet above standard due to containing refractory organics. A novel coupling reactor, electrochemical oxidation using BDD anodes and biological aerated filter (BAF), has been developed for carbon and nitrogen removal from biotreated coking wastewater, focusing on COD, BOD5,NH4+-N, andNO3--N removal on operation over 90 days with average effluent value of 91.3, 9.73, 0.62, and 13.34 mgL−1, respectively. Average value of BOD5/COD and BOD5/NO3--N was enhanced from 0.05 to 0.27 and from 0.45 to 1.21 by electrochemical oxidation, respectively, with average energy consumption of 67.9 kWh kg−1COD. In addition, the refractory organics also were evidently mineralized in the unit based on the data of the three-dimensional fluorescence spectra. Meanwhile, its effluent provided excellent substrate for biological denitrification in BAF. At hydraulic retention time (HRT) of 13.08 h, about 12 mgL−1  NO3--N was depleted through denitrification, and it mainly occurred at top of 0.25 m height of BAF. Therefore, it is feasible to apply the coupling reactor for biotreated coking wastewater treatment and achieve desirable effluent quality.
    Print ISSN: 2090-9063
    Electronic ISSN: 2090-9071
    Topics: Chemistry and Pharmacology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-02
    Description: Filaments are a type of wide-existing astronomical structure. It is a challenge to separate filaments from radio astronomical images, because their radiation is usually weak. What is more, filaments often mix with bright objects, e.g., stars, which makes it difficult to separate them. In order to extract filaments, A. Men’shchikov proposed a method “getfilaments” to find filaments automatically. However, the algorithm removed tiny structures by counting connected pixels number simply. Removing tiny structures based on local information might remove some part of the filaments because filaments in radio astronomical image are usually weak. In order to solve this problem, we applied morphology components analysis (MCA) to process each singe spatial scale image and proposed a filaments extraction algorithm based on MCA. MCA uses a dictionary whose elements can be wavelet translation function, curvelet translation function, or ridgelet translation function to decompose images. Different selection of elements in the dictionary can get different morphology components of the spatial scale image. By using MCA, we can get line structure, gauss sources, and other structures in spatial scale images and exclude the components that are not related to filaments. Experimental results showed that our proposed method based on MCA is effective in extracting filaments from real radio astronomical images, and images processed by our method have higher peak signal-to-noise ratio (PSNR).
    Print ISSN: 1687-7969
    Electronic ISSN: 1687-7977
    Topics: Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...