ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-05-28
    Description: In the process of tunnel excavation, large charge wedge cutting blasting is widely used to improve the effect of cut blasting and speed up the excavation rate, which is tantamount to increasing the construction cost. In order to save economic cost and improve cutting blasting effect, wedge cutting models with five different cutting angles were experimented and studied by using concrete materials on the basis of similarity theory analysis. The relationships among cutting depth, blasting volume, blasting fragment, and cutting angle are studied and deduced by the dimensional analysis method. The polynomial fitting of cutting depth, blasting volume, blasting fragment, and cutting angle is carried out according to the experimental data, and the corresponding fitting formula is obtained. The optimum cutting depth, hole utilization rate, blasting volume, and blasting fragment were obtained when the wedge cutting angle was 67° under the same charge. The values were 1.665 × 10−1 m, 92.5%, 8.390 × 10−3 m3, and 49.07 mm, respectively. With the use of TC4850N type blasting vibration meter, the blasting vibrations on the wedge in four directions are tested and analyzed. The results show that when wedge cutting inclination is 65 degrees, the peak vibration velocity is the minimum and the vibration intensity of the wedge cutting inclined side is generally smaller than that of the vertical side. Considering the cutting depth, blasting volume, blasting fragment, blasting vibration hazard, drilling error, tunneling construction cost, and other factors, the 65°∼69° wedge cutting blasting in engineering practice can improve the blasting tunneling rate and increase economic benefits. The experimental results show that the blasting tunneling rate is increased and the economic benefit is increased with the minimum construction tunneling cost, which has certain engineering significance.
    Print ISSN: 1687-8086
    Electronic ISSN: 1687-8094
    Topics: Architecture, Civil Engineering, Surveying
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-01-01
    Description: Although realistic representation of the convective boundary layer (CBL) in the desert region in Northwest China is important for weather forecasts and climate simulations, evaluations of the performance of various planetary boundary layer (PBL) schemes in simulating the CBL in the region are rare. In this study, the performance of a scale-aware PBL scheme newly implemented into the Weather Research and Forecasting (WRF) model in simulating the CBL in the Taklimakan desert is evaluated based on a comparison with both the WRF-LES simulations and observations, with the focus on scale dependencies of the simulations compared to the conventional PBL scheme. A series of simulations are performed with a scale-aware PBL scheme (Shin-Hong) and the conventional PBL scheme (YSU) for a deep CBL observed at Tazhong station in the central Taklimakan on 1 July 2016. The CBL was over 5000 m deep with wider and deeper rolls than in a shallow boundary layer. The results showed that the vertical structure simulated with the Shin-Hong scheme was closer to that in both the WRF-LES (large-eddy-simulation) and observations than that simulated with the YSU. The simulation with the scale-aware scheme reproduced cellular rolls similar to those in the WRF-LES, while the conventional PBL scheme struggled to trigger intense convective cells rather than cellular rolls. The results strongly suggest that the scale-aware nonlocal PBL scheme can be used to adequately reproduce the scale and evolution of the observed rolls in the deep CBL in Taklimakan desert at subkilometer resolutions.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...