ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-01-01
    Description: Global warming in the first half of the 21st century is likely to have profound influences on South American vegetation and climate. Although coupled atmosphere-biosphere models have been widely used to forecast future vegetation patterns under various scenarios of global warming, they have not been used to assess the potentially critical role of variations in sea surface temperature (SST) in modifying the climate-vegetation interactions. Here, we use monthly output of a 100-year coupled model run to investigate the relationship between SST, precipitation, and productivity of vegetation. Specifically, we assess statistical correlations between SST variability and vegetation in six different South America regions: Northern South America, Western Amazonia, Eastern Amazonia, Northeast Brazil, Central Brazil, and Patagonia. Our model robustly simulates changes in mean precipitation, net primary production (NPP), upper canopy leaf area index (LAI), and lower canopy LAI under warming and nonwarming scenarios. Most significantly, we demonstrate that spatial-temporal variability in SST exerts a strong influence over the vegetation dynamics in all six South American regions.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-01-01
    Description: The wind stress is a measure of momentum transfer due to the relative motion between the atmosphere and the ocean. This study aims to investigate the anomalous pattern of atmospheric and oceanic circulations due to 50% increase in the wind stress over the equatorial region and the Southern Ocean. In this paper we use a coupled climate model of intermediate complexity (SPEEDO). The results show that the intensification of equatorial wind stress causes a decrease in sea surface temperature in the tropical region due to increased upwelling and evaporative cooling. On the other hand, the intensification of wind stress over the Southern Ocean induces a regional increase in the air and sea surface temperatures which in turn leads to a reduction in Antarctic sea ice thickness. This occurs in association with changes in the global thermohaline circulation strengthening the rate of Antarctic Bottom Water formation and a weakening of the North Atlantic Deep Water. Moreover, changes in the Southern Hemisphere thermal gradient lead to modified atmospheric and oceanic heat transports reducing the storm tracks and baroclinic activity.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...