ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Geological Society of London  (3)
  • 1
    Publication Date: 2018
    Description: 〈p〉This paper presents the geohazard assessment for a proposed bridge across Bjørnafjorden in western Norway. The fjord is 〈i〉c.〈/i〉 5 km wide with a maximum depth of 550 m at the proposed bridge crossing. The main geohazards of concern are submarine slope instabilities. To identify locations of instability, their susceptibility to failure, and their potential runout distances, we performed the following analyses: (1) static and pseudo-static limit equilibrium analyses for the entire fjord crossing area; (2) 1D seismic slope stability sensitivity analyses for different slope angles and soil depths; (3) 2D static and pseudo-static finite element analyses for selected profiles; (4) back-analysis of a palaeolandslide; and (5) quasi-2D and quasi-3D landslide dynamic simulations calibrated using results from the back-analysis. The workflow progresses from simplified to more advanced analyses focusing on the most critical locations. The results show that the soils in many locations of the fjord are potentially unstable and could be the loci of landslides and debris flows. The evidence of numerous palaeosubmarine landslides identified on geophysical records reinforces this conclusion. However, the landslide triggers and timing are currently unknown. This paper demonstrates the need for comprehensive and multidisciplinary geohazard analyses for any infrastructure projects conducted in fjords.〈/p〉
    Print ISSN: 0375-6440
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018
    Description: 〈p〉On 18 November 1929, an M〈sub〉w〈/sub〉 7.2 earthquake occurred south of Newfoundland, displacing 〉100 km〈sup〉3〈/sup〉 of sediment volume that evolved into a turbidity current. The resulting tsunami was recorded across the Atlantic and caused fatalities in Newfoundland. This tsunami is attributed to sediment mass failure because no seafloor displacement due to the earthquake has been observed. No major headscarp, single evacuation area nor large mass transport deposit has been observed and it is still unclear how the tsunami was generated. There have been few previous attempts to model the tsunami and none of these match the observations. Recently acquired seismic reflection data suggest that rotational slumping of a thick sediment mass may have occurred, causing seafloor displacements up to 100 m in height. We used this new information to construct a tsunamigenic slump source and also carried out simulations assuming a translational landslide. The slump source produced sufficiently large waves to explain the high tsunami run-ups observed in Newfoundland and the translational landslide was needed to explain the long waves observed in the far field. However, more analysis is needed to derive a coherent model that more closely combines geological and geophysical observations with landslide and tsunami modelling.〈/p〉
    Print ISSN: 0375-6440
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-01-01
    Description: Sediment slumps are known to have generated important tsunamis such as the 1998 Papua New Guinea (PNG) and the 1929 Grand Banks events. Tsunami modellers commonly use solid blocks with short run-out distances to simulate these slumps. While such methods have the obvious advantage of being simple to use, they offer little or no insight into physical processes that drive the events. The importance of rotational slump motion to tsunamigenic potential is demonstrated in this study by employing a viscoplastic landslide model with Herschel–Bulkley rheology. A large number of simulations for different material properties and landslide configurations are carried out to link the slump's deformation, rheology, its translational and rotational kinematics, to its tsunami genesis. The yield strength of the slump is shown to be the primary material property that determines the tsunami genesis. This viscoplastic model is further employed to simulate the 1929 Grand Banks tsunami using updated geological source information. The results of this case study suggest that the viscoplastic model can be used to simulate complex slump-induced tsunami. The simulations of the 1929 Grand Banks event also indicate that a pure slump mechanism is more tsunamigenic than a corresponding translational landslide mechanism.
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...