ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-05-01
    Description: The Queen Charlotte Fault (QCF) is a major strike-slip fault that forms the boundary between the Pacific and North American plates from 51° to 58° N. Near 53.2° N, the angle of oblique convergence predicted by the Mid-Ocean Ridge VELocity (MORVEL) interplate pole of rotation decreases from 〉15° in the south to 〈15° in the north. South of 53.2° N, the convergent component of plate motion results in the formation of a 40 km wide terrace on the Pacific plate west of QCF and earthquakes with thrust mechanisms (including the 2012 Haida Gwaii earthquake sequence) are observed. North of 53.2° N, in the primary rupture zone of the M  8.1 strike-slip earthquake of 1949, the linear terrace disappears, and topography of the continental slope west of the QCF is characterized by a complex pattern of ridges and basins that trend obliquely to the primary trace of the QCF. Deformation within the Pacific plate appears to occur primarily through strike-slip faulting with a minor thrust component on secondary synthetic faults. The orientations of these secondary faults, as determined from seismic reflection and bathymetric data, are consistent with the reactivation of faults originally formed as ridge-parallel normal faults and as thrust faults formed parallel to the QCF south of the bend at 53.2° N and subsequently translated to the north. We suggest that an oblique convergence angle of 15° represents a critical threshold separating distinct crustal responses to transpression. This result is consistent with theoretical and analog strain models of transpressive plate boundaries. The sharpness of this transition along the QCF, in contrast to purely continental transform boundaries, may be facilitated by the relatively simple structure of oceanic crust and the presence of pre-existing, optimally oriented faults in the young Pacific plate.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-05-01
    Description: The Queen Charlotte fault (QCF) is a dextral transform system located offshore of southeastern Alaska and western Canada, accommodating ~4.4 cm/yr of relative motion between the Pacific and North American plates. Oblique convergence along the fault increases southward, and how this convergence is accommodated is still debated. Using seismic reflection data, we interpret offshore basement structure, faulting, and stratigraphy to provide a geological context for two recent earthquakes, an M w  7.5 strike-slip event near Craig, Alaska, and an M w  7.8 thrust event near Haida Gwaii, Canada. We map downwarped Pacific oceanic crust near 54° N, between the two rupture zones. Observed downwarping decreases north and south of 54° N, parallel to the strike of the QCF. Bending of the Pacific plate here may have initiated with increased convergence rates due to a plate motion change at ~6 Ma. Tectonic reconstruction implies convergence-driven Pacific plate flexure, beginning at 6 Ma south of a 10° bend the QCF (which is currently at 53.2° N) and lasting until the plate translated past the bend by ~2 Ma. Normal-faulted approximately late Miocene sediment above the deep flexural depression at 54° N, topped by relatively undeformed Pleistocene and younger sediment, supports this model. Aftershocks of the Haida Gwaii event indicate a normal-faulting stress regime, suggesting present-day plate flexure and underthrusting, which is also consistent with reconstruction of past conditions. We thus favor a Pacific plate underthrusting model to initiate flexure and accommodation space for sediment loading. In addition, mapped structures indicate two possible fault segment boundaries along the QCF at 53.2° N and at 56° N.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018
    Description: 〈p〉Multibeam echosounder (MBES) images, 3.5 kHz seismic-reflection profiles and piston cores obtained along the southern Queen Charlotte Fault Zone are used to map and date mass-wasting events at this transform margin – a seismically active boundary that separates the Pacific Plate from the North American Plate. Whereas the upper continental slope adjacent to and east (upslope) of the fault zone offshore of the Haida Gwaii is heavily gullied, few large-sized submarine landslides in this area are observed in the MBES images. However, smaller submarine seafloor slides exist locally in areas where fluid flow appears to be occurring and large seafloor slides have recently been detected at the base of the steep continental slope just above its contact with the abyssal plain on the Queen Charlotte Terrace. In addition, along the subtle slope re-entrant area offshore of the Dixon Entrance shelf bathymetric data suggest that extensive mass wasting has occurred in the vicinity of an active mud volcano venting gas. We surmise that the relative lack of submarine slides along the upper slope in close proximity to the Queen Charlotte Fault Zone may be the result of seismic strengthening (compaction and cohesion) of a sediment-starved shelf and slope through multiple seismic events.〈/p〉
    Print ISSN: 0375-6440
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018
    Description: 〈p〉The Queen Charlotte Fault defines the Pacific–North America transform plate boundary in western Canada and southeastern Alaska for 〈i〉c.〈/i〉 900 km. The entire length of the fault is submerged along a continental margin dominated by Quaternary glacial processes, yet the geomorphology along the margin has never been systematically examined due to the absence of high-resolution seafloor mapping data. Hence the geological processes that influence the distribution, character and timing of mass transport events and their associated hazards remain poorly understood. Here we develop a classification of the first-order shape of the continental shelf, slope and rise to examine potential relationships between form and process dominance. We found that the margin can be split into six geomorphic groups that vary smoothly from north to south between two basic end-members. The northernmost group (west of Chichagof Island, Alaska) is characterized by concave-upwards slope profiles, gentle slope gradients (2 and display scarp heights between 10 and 250 m. Transpression along the Queen Charlotte Fault increases southwards and the slope physiography is thus progressively more influenced by regional-scale tectonic deformation. The southernmost group (west of Haida Gwaii, British Columbia) defines the tectonically dominated end-member: the continental slope is characterized by steep gradients (〉20°) along the flanks of broad, margin-parallel ridges and valleys. Mass transport features in the tectonically dominated areas are mostly observed along steep escarpments and the larger slides (up to 10 km〈sup〉2〈/sup〉) appear to be failures of consolidated material along the flanks of tectonic features. Overall, these observations highlight the role of first-order margin physiography on the distribution and type of submarine landslides expected to occur in particular morphological settings. The sediment-dominated end-member allows for the accumulation of under-consolidated Quaternary sediments and shows larger, more frequent slides; the rugged physiography of the tectonically dominated end-member leads to sediment bypass and the collapse of uplifted tectonic features. The maximum and average dimensions of slides are an order of magnitude smaller than those of slides observed along other (passive) glaciated margins. We propose that the general patterns observed in slide distribution are caused by the interplay between tectonic activity (long- and short-term) and sediment delivery. The recurrence ( 7 earthquakes along the Queen Charlotte Fault may generate small, but frequent, failures of under-consolidated Quaternary sediments within the sediment-dominated regions. By contrast, the tectonically dominated regions are characterized by the bypass of Quaternary sediments to the continental rise and the less frequent collapse of steep, uplifted and consolidated sediments.〈/p〉
    Print ISSN: 0375-6440
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...