ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-01-21
    Description: Oblique extension is expected to result in a combination of dip-slip and strike-slip displacement along faults with strike orthogonal and oblique to the extension direction, respectively. This general concept is in disagreement with observations from natural oblique rifts, where faults show dip-slip kinematics indicating pure extension irrespective of the fault strike with respect to the regional extension direction. Consequently, along oblique structures, slip is re-oriented, and oblique to the applied extension direction. Besides, at fault scale, slip is re-oriented along strike such that it is dip slip at the fault center and becomes highly oblique slip toward the fault tips. Here, we use analogue experiments to show that this discrepancy can be resolved when a preexisting weak zone (WZ) is present in the crust at the onset of oblique extension. The WZ is implemented within the lower crust and strikes oblique to the extension direction. Our experimental results show that an inherited WZ within the ductile crust favors the re-orientation of slip such that oblique extension results in pure dip-slip displacement on faults that strike oblique with respect to the extension direction. Furthermore, we show that slip is re-oriented along strike of major faults, such that the fault center shows dip-slip kinematics, whereas its tips display strike-slip kinematics. These findings call into question the use of paleostress reconstructions to constrain plate kinematics in oblique extensional tectonic settings.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-11-22
    Description: Physical analogue experiments are used to investigate the effect of plate and intra-lithospheric coupling on the efficiency of continental lithosphere subduction and the style of collision. Key parameters investigated in this study are: the degree of plate coupling, regulated by the viscosity ratio of the decoupling zone and the surrounding crust and/or mantle lithosphere; and the depth of decoupling. The experimental results show that subduction of the slab is deepest in cases with strong decoupling at the plate interface and at the level of the lower crust of the downgoing plate, with upper-plate deformation restricted to the area close to the plate contact. In these cases, the strongly asymmetric orogenic wedge is widest, consists of a series of imbricated upper-crustal slices derived from the lower plate, and lacks a retro-wedge. In contrast, a reduced strength contrast across the plate interface, at the depth of either the lithospheric mantle or the ductile crust, leads to a combination of subduction and thickening of the mantle lithosphere in both the upper and the lower plates. The degree of plate coupling determines the efficiency of subduction of continental lithosphere under conditions of collision of neutrally buoyant lithospheres, whereas the vertical position of decoupling horizons within the subducting plate controls the amount of subducted lower crust. Transfer of strain to the upper plate depends critically on (1) the degree of plate coupling, with stronger coupling leading to more deformation, and (2) the presence of decoupling horizons within the upper plate, which act as strain guides to propagate deformation into the upper plate. The experimental results explain the geometry and the sequence of deformation in subduction dominated orogens, such as the Carpathians or the Dinarides, and provide a mechanical basis for the transfer of strain to the upper plate.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-08-23
    Description: The crustal seismic velocity structure of northwestern Europe shows a low P-wave velocity zone (LVZ) in the lower crust along the Caledonian Thor suture zone (TSZ) that cannot be easily attributed to Avalonia or Baltica plates abutting the TSZ. The LVZ appears to correspond to a hitherto unrecognized crustal segment (accretionary complex) that separates Avalonia from Baltica, explaining well the absence of Avalonia further east. Consequently, the northern boundary of Avalonia is shifted ~150 km southward. Our interpretation, based on analysis of deep seismic profiles, places the LVZ in a consistent crustal domain interpretation. A comparison with present-day examples of the Kuril and Cascadia subduction zones suggests that the LVZ separating Avalonia from Baltica is composed of remnants of the Caledonian accretionary complex. If so, the present-day geometry probably originates from pre-Variscan extension and eduction during Devonian–Carboniferous backarc extension. The reinterpretation of deep crustal zonation provides a crustal framework in which the northern limit of Avalonia corresponds to the southern limit of the deep North German Basin and the northern limit of prolific gas reservoirs and late Mesozoic inversion structures.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...