ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-09-24
    Description: The 2010 Eyjafjallajökull eruption in Iceland provided a unique opportunity to quantify the evolution of proglacial geomorphology during a series of volcanogenic jökulhlaups (glacial outburst floods) (〉140 events). Time-lapse imagery and repeat terrestrial laser scans before and directly after the eruption show that the jökulhlaup of 14 April 2010 composed 61% of the 57 x 10 6 m 3 total discharge of the combined events, and had the highest peak discharge for the two main flood events, but only deposited 18% of the total volume of sediment in front of Gígjökull glacier. The majority of sediments (67% of a total volume of 17.12 x 10 6 m 3 ) were deposited by the 15 April 2010 jökulhlaup, and this was followed by extensive reworking by a series of smaller jökulhlaups over the following 29 days that deposited 15% of the total sediment. The geomorphological and sedimentary signatures of the two largest jökulhlaups associated with the onset of the eruption have either been reworked by later floods or are buried by later flood deposits. Consequently, the ice-proximal, posteruption landscape cannot be used to reconstruct the characteristics or magnitudes of either of the two largest jökulhlaups. The findings support a complex-response model in which peak discharge and the bulk of the sediment transported is decoupled by changing routing mechanisms and water:sediment ratios during the eruption.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-12-01
    Description: Current laser scanning (Lidar, light detection and ranging) technologies span a wide range of survey extent and resolutions, from regional airborne Lidar mapping and terrestrial Lidar field surveys to laboratory systems utilizing indoor three-dimensional (3D) laser scanners. Proliferation in Lidar technology and data collection enables new approaches for monitoring and analysis of landscape evolution. For example, repeat Lidar surveys that generate a time series of point cloud data provide an opportunity to transition from traditional, static representations of topography to terrain abstraction as a 3D dynamic layer. Three case studies are presented to illustrate novel techniques for landscape evolution analysis based on time series of Lidar data: (1) application of multiyear airborne Lidar surveys to a study of a dynamic coastal region, where the change is driven by eolian sediment transport, wave-induced beach erosion, and human intervention; (2) monitoring of vegetation growth and the impact of landscape structure on overland flow in an agricultural field using terrestrial laser scanning; and (3) investigation of landscape design impacts on overland water flow and other physical processes using a tangible geospatial modeling system. The presented studies demonstrate new insights into landscape evolution in different environments that can be gained from Lidar scanning spanning 1.0–0.001 m resolutions with geographic information system analysis capabilities.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-01-01
    Description: Zircons in transport in the modern Amazon River range from coarse silt to medium sand. Older grains are smaller on average: Mesozoic and Cenozoic grains have average equivalent spherical diameter (ESD) 122 {+/-} 42 {micro}m (lower fine sand), whereas grains 〉2000 Ma have average ESD 67 {+/-} 14 {micro}m (upper coarse silt). As a full Wentworth size class separates the two values, zircons in these age populations are hydraulically distinct. Host sand size is correlated with average size of co-transported zircons, implying hydrodynamic fractionation. Zircon size is positively correlated with percent medium sand, and inversely correlated with percent very fine sand (p 50% medium sand, average zircon size is 100 {micro}m, compared with 80 {micro}m in samples with 〉50% very fine sand. We infer from these data that zircon deposition is not size-blind, and that zircons track with hydraulically comparable sand grains. As different aged grains tend to have different characteristic sizes, this indicates the possibility of hydrodynamic fractionation of age populations. Five samples representing different hydrodynamic microenvironments of a single dune present significantly different detrital zircon age spectra, apparently the result of hydraulic processes. Peak mismatch (age peaks failing to overlap at 2{sigma} level) is the most common disparity; but age populations present in some samples are missing from other samples. The lack of correspondence among the samples appears to exceed that attributable to random sampling. We conclude that hydrodynamic fractionation of zircons and zircon-age populations does occur. Zircon size should therefore be taken into consideration in detrital zircon provenance analysis.
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-03-01
    Description: Chemical compositions for 310 igneous rocks from the Cordillera de Panama and the Sona and Azuero peninsulas were supplemented by 40Ar/39Ar dating and Sr-, Nd-, Pb-, and O-isotope analysis to determine the magmatic evolution and oceanic plate interactions over the past 100 Ma in western Panama. An initial phase of intraplate magmatism, having geochemical characteristics of the Galapagos hotspot, formed the oceanic basement of the Caribbean large igneous province from 139 to 69 Ma. Younger accreted terranes with enriched trace element patterns (accreted ocean island basalt [OIB]) were amalgamated between 70 and 20 Ma. A second magmatic phase in the Azuero and Sona peninsulas has trace element patterns (Sona-Azuero arc) suggesting the initiation of subduction at 71-69 Ma. Arc magmatism continued in the Chagres basin region (Chagres-Bayano arc) from 68 to 40 Ma. A third phase formed discrete volcanic centers across the Cordillera de Panama (Cordilleran arc) from 19 to 5 Ma. The youngest phase consists of isolated volcanic centers of adakitic composition (Adakite suite) in the Cordillera de Panama that developed over the past 2 million years. Initiation of arc magmatism at 71 Ma coincides with the cessation of Galapagos plateau formation, suggesting a causal link. The transition from intraplate to arc magmatism occurred relatively quickly and introduced a new enriched mantle source. The arc magmatism involved progressive transition to more homogeneous intermediate mantle wedge compositions through mixing and homogenization of subarc magma sources through time and/or the replacement of the mantle wedge by a homogeneous, relatively undeleted asthenospheric mantle. Adakite volcanism started after a magmatic gap, enabled by the formation of a slab window.
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-07-01
    Description: A large integrated data set of cores, outcrop data, and seismic transects from the mud-buried Vars-Winchester esker in the Champlain Sea basin, Canada, was studied to gain insight into how muddy glaciated basins fill with sediment, and how esker sedimentary systems contribute to this process. Three stratigraphic units--a till sheet over carbonate bedrock, the Vars-Winchester esker , and overlying Champlain Sea mud--are identified in the data set. The till is massive, mud rich, carbonate rich, and drumlinized. The esker is also carbonate rich, and rests erosively on till or bedrock. It consists of two elements, a narrow gravelly central ridge and a broad sandy carapace. Three units comprise the overlying mud package: gray carbonate-rich rhythmites, massive bioturbated mud, and carbonate-poor, red-and-gray rhythmites. A sequence stratigraphic model is proposed to explain these observations. Emphasis is placed on gradual ice-front translation superimposed by rapid meltwater events. The esker is interpreted to have been derived from the underlying till by water that flowed through a subglacial conduit (R-channel), within which the narrow gravelly central ridge was deposited. Most mud and finer sand bypassed the conduit and was deposited proglacially on the floor of the Champlain Sea, first as sandy outwash and, farther basinward, as muddy carbonate-rich rhythmites. Gradual ice-front retreat superposed distal facies over proximal facies, generating the upward-fining succession that starts with the esker gravel and ends with muddy rhythmites. Most esker sediment appears to have been deposited during rapid, jokulhlaup-like floods that punctuated gradual retreat. Discharges are estimated to have been high, possibly on the order of several hundred to, perhaps more commonly, several thousand cubic meters per second. The chaotic and random-looking appearance of the resultant sedimentological signatures in the esker sensu stricto is sharply contrasted with the regularity of the muddy rhythmites. If the rhythmites are indeed correlative to the esker, which seems reasonable given their geochemistry and the fact that their volume scales to the volume of mud in the till, the flood events that deposited the esker must have been seasonally mediated, and the basin water must have attenuated the flood signal, resulting in a rhythmic "on-off" signature in more distal portions of the system. The regularity of the rhythmites does not betray the chaotic nature of the esker sensu stricto, and vice versa. Studying either one in isolation would lead to a very different "end-member" impression of how eskers form and how esker sedimentary systems operate during the infilling of glaciated basins.
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-02-01
    Description: The Fraser River in British Columbia, Canada, is the longest non-dammed river on the west coast of North America and supplies 20 × 106 t/yr of sediment to the Pacific Ocean. Abundant geomorphological evidence indicates that the Fraser River reversed its course to southward flow in the recent geological past. Investigation of two volcanic dams at Dog Creek demonstrates northward flow of the Fraser until at least 1.06 Ma, before reversal and erosion of the 270-km-long Fraser Canyon. We propose that the submarine Nitinat Fan off the coast of British Columbia records the reversal and sudden input of coarse continental-derived sediment ca. 0.76 Ma. This study confirms reversal of the Fraser River and places a firm constraint on the maximum age of that reversal. Reversal likely followed stream capture in response to enhanced glaciofluvial erosion and uplift of the Coast Mountains.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-11-04
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-12-03
    Description: The Pamir is the western continuation of Tibet and the site of some of the highest mountains on Earth, yet comparatively little is known about its crustal and tectonic evolution and erosional history. Both Tibet and the Pamir are characterized by similar terranes and sutures that can be correlated along strike, although the details of such correlations remain controversial. The erosional history of the Pamir with respect to Tibet is significantly different as well: Most of Tibet has been characterized by internal drainage and low erosion rates since the early Cenozoic; in contrast, the Pamir is externally drained and topographically more rugged, and it has a strongly asymmetric drainage pattern. Here, we report 700 new U-Pb and Lu-Hf isotope determinations and 〉300 40 Ar/ 39 Ar ages from detrital minerals derived from rivers in China draining the northeastern Pamir and 〉1000 apatite fission-track (AFT) ages from 12 rivers in Tajikistan and China draining the northeastern, central, and southern Pamir. U-Pb ages from rivers draining the northeastern Pamir are Mesozoic to Proterozoic and show affinity with the Songpan-Ganzi terrane of northern Tibet, whereas rivers draining the central and southern Pamir are mainly Mesozoic and show some affinity with the Qiangtang terrane of central Tibet. The Hf values are juvenile, between 15 and –5, for the northeastern Pamir and juvenile to moderately evolved, between 10 and –40, for the central and southern Pamir. Detrital mica 40 Ar/ 39 Ar ages for the northeastern Pamir (eastern drainages) are generally older than ages from the central and southern Pamir (western drainages), indicating younger or lower-magnitude exhumation of the northeastern Pamir compared to the central and southern Pamir. AFT data show strong Miocene–Pliocene signals at the orogen scale, indicating rapid erosion at the regional scale. Despite localized exhumation of the Mustagh-Ata and Kongur-Shan domes, average erosion rates for the northeastern Pamir are up to one order of magnitude lower than erosion rates recorded by the central and southern Pamir. Deeper exhumation of the central and southern Pamir is associated with tectonic exhumation of central Pamir domes. Deeper exhumation coincides with western and asymmetric drainages and with higher precipitation today, suggesting an orographic effect on exhumation. A younging-southward trend of cooling ages may reflect tectonic processes. Overall, cooling ages derived from the Pamir are younger than ages recorded in Tibet, indicating younger and higher magnitudes of erosion in the Pamir.
    Print ISSN: 1941-8264
    Electronic ISSN: 1947-4253
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-01
    Description: A series of large-scale erosional scours are described from four modern deep-water canyon and/or channel systems along the northeast Atlantic continental margin. Regional-scale geophysical data indicate that most scours occur in zones of rapid flow expansion, such as canyon and/or channel termini and margins. High-resolution images of the scours cover [~]25 km2 at 2 x 2 m pixel size, and were obtained at depths of 4200-4900 m using Autosub6000, an autonomous underwater vehicle equipped with an EM2000 multibeam bathymetry system. Sedimentological and microfossil-based chronological data of scour fills and interscour areas were obtained via accurately located piston cores that targeted specific sites within imaged areas. These core data reveal a number of key findings. (1) Deep-water scours can be very long lived (〉0.2 m.y.) and may undergo discrete phases of isolation, amalgamation, and infilling. (2) Deep-water scours can develop via a composite of cutting and filling events with periodicities of between tens of thousands and hundreds of thousands of years. (3) Immediately adjacent scours may have strikingly different sedimentological histories and do not necessarily evolve contemporaneously. (4) Scour infills are typically out of phase with sedimentation in intrascour areas, having thin sands internally and thick sands externally, or thick muds internally and thin muds externally. (5) Erosional hiatuses within scour fills may represent hundreds of thousands of years of time, and yet leave little visible record. Four distinct morphologies of scour are identified that range from 40 to 3170 m wide and 8 to 48 m deep: spoon shaped, heel shaped, crescent shaped, and oval shaped. Isolated scours are shown to coalesce laterally into broad regions of amalgamated scour that may be several kilometers across. The combined morphosedimentological data set is used to examine some of the putative formative mechanisms for scour genesis.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-09-01
    Description: The extraordinary abundance of dolomite in the Proterozoic challenges our understanding of Precambrian marine environments. Here we show that synsedimentary marine dolomite precipitation was pervasive within Cryogenian reef complexes from the Adelaide Fold Belt, South Australia. Although these reefs are composed of dolomite, textural evidence indicates an originally aragonitic mineralogy for depositional components, in common with many other Neoproterozoic carbonates. Allochthonous slope debris from the reefs invariably contains both limestone and dolomite clasts, indicating synsedimentary dolomitization in the reefs. We describe several new forms of fibrous marine dolomite cement from the reefs that have a length-slow optical character. These fascicular slow, radial slow, and rhombic dolomite cements have finely preserved cathodoluminescent growth zones, and optical characteristics that indicate they originally precipitated as dolomite, rather than replacing calcite or aragonite cements. Abundant early marine dolomite precipitation implies a radically different seawater chemistry for the Cryogenian. Perhaps these aragonite-dolomite seas are associated with extreme Neoproterozoic glacial events and/or ocean anoxia.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...