ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-05-15
    Description: The voluminous Kalkarindji flood basalts erupted in Australia during the Cambrian and covered 〉2 x 10 6 km 2 . New U-Pb and 40 Ar/ 39 Ar age data from intrusive rocks and lava flows yielded statistically indistinguishable ages at ca. 511 Ma, suggesting a relatively brief emplacement for this province. A zircon age of 510.7 ± 0.6 Ma shows that this province is temporally indistinguishable at the few-hundred-thousand-year level from the Early–Middle Cambrian (Stage 4–5) boundary age of 510 ± 1 Ma, which marks the first severe extinction of the Phanerozoic and an extended marine anoxia period. Sulfur concentration measurements ranging from 〈50 to 1900 μg/g, and fractal analysis of extensive explosive volcanic breccias, suggest that blasts and phreatomagmatic explosions have contributed to injection of large amounts of sulfur into the stratosphere. In addition, magma intrusions in oil, gas, and sulfate deposits may have generated significant emission of CH 4 and SO 2 which, along with volcanic gases, would have combined to cause an oscillation of the climate and led to the Cambrian extinction.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-11-01
    Description: Mantle xenoliths sampled by kimberlite and alkali basalt magmas show a range of metasomatic styles, but direct evidence for the nature of the metasomatising fluids is often elusive. It has been suggested that carbonate-rich melts produced by partial melting of carbonated peridotites and eclogites play an important role in modifying the composition of the lithospheric mantle. These mantle-derived carbonate melts are often inferred to be enriched in alkali elements; however, alkali-rich carbonate fluids have only been reported as micro-inclusions in diamonds and as unique melts involved in the formation of the Udachnaya-East kimberlite (Yakutia, Russia). In this paper we present the first direct evidence for alkali-carbonate melts in the shallow lithospheric mantle (~110–115 km), above the diamond stability field. These alkali-carbonate melts are preserved in primary multiphase inclusions hosted by large metasomatic ilmenite grains contained in a polymict mantle xenolith from the Bultfontein kimberlite (Kimberley, South Africa). The inclusions host abundant carbonates (magnesite, dolomite, and K-Na-Ca carbonates), kalsilite, phlogopite, K-Na titanates, and phosphates, with lesser amounts of olivine, chlorides, and alkali sulfates. Textural and chemical observations indicate that the alkali-carbonate melt likely derived from primary or precursor kimberlite magmas. Our findings extend the evidence for alkali-carbonate melts/fluids permeating the Earth mantle outside the diamond stability field and provide new insights into the chemical features of previously hypothesized melts. As metasomatism by alkali-rich carbonate melts is often reported to affect mantle xenoliths, and predicted from experimental studies, the fluid type documented here likely represent a major metasomatising agent in the Earth’s lithospheric mantle.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...