ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-12-30
    Description: Insight into the spatial and temporal changes of slip-rate is essential to understand the kinematic role of large strike-slip faults in continental collision zones. Geodetic and geologic rates from present to several million years ago along the Karakorum fault range from 0 to 11 mm/yr. Here, we determine the first late Quaternary slip-rate at the southern end of the linear Bangong-Chaxikang segment of the Karakorum fault, using cumulative offsets (20–200 m) of fans and terraces at three sites, as well as 74 new 10 Be surface-exposure ages to constrain the age of these offset geomorphic markers. The rate is 〉3 mm/yr at sites Gun and Chaxikang, and it is 〉1.7–2.2 mm/yr at the Gar fan site. Together with rates obtained along the southernmost Menshi-Kailas segment, the Karakorum fault slip-rate seems to increase southeastward from south of Bangong Lake to Kailas (from 〉3 to 〉8 mm/yr). These Karakorum fault slip-rate data (〉3–8 mm/yr), together with the total length of the fault (〉1000 km) and its initiation age (〉13–23 Ma), confirm that the Karakorum fault is the major fault accommodating dextral strike-slip motion NE of the western Himalayas. The dextral Karakorum fault in the south and the conjugate left-lateral Longmu Co–Altyn Tagh fault system in the north are thus the major strike-slip faults of western Tibet, which contribute to eastward extrusion of Tibet.
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Geological Society of America (GSA)
    In: Geology
    Publication Date: 2019
    Description: 〈span〉We documented occurrences of native copper (Cu), silver (Ag), and gold (Au) in a pāhoehoe flow from Kīlauea volcano (Hawaii, USA), an aʻā flow from Mauna Loa volcano (Hawaii), and a midoceanic- ridge basalt (MORB) from the Chile Ridge (southeastern Pacific Ocean). Native Ag in Kīlauea and MORB samples consistently contained minor Cl (〈1 wt%). Native Ag in Hawaiian basalts can occur at the center of nearly circular patches of relatively evolved minerals, which presumably formed after late-stage silicate liquid infilled pipe vesicles. Sulfur loss and oxidation of a Cu-sulfide phase can explain the native Cu, but not Au and Ag deposition. The rare occurrence of native Cu-Au-Ag alloys and the large native Au and Ag grain size suggest separate metal precipitation mechanisms. A fractional crystallization and degassing model envisions initial Au and Ag enrichment in crystallizing interstitial liquid and further enrichment in a separating vapor phase. From the flow interior, the metals ascend through ephemeral pipe vesicles as bisulfide (Au) or chloride (Ag) vapor complexes and precipitate in the transition zone below the upper vesicular zone, owing to temperature and oxidation state changes. Our results support igneous vapor transport of ore elements in mafic plutonic systems and imply preconcentration of gold during lava solidification before later hydrothermal remobilization.〈/span〉
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-29
    Description: The largest accretionary orogen in the world, the Central Asian orogenic belt, has evolved through the assembly of various oceanic and continental blocks. Understanding the processes associated with the development of this orogenic belt relies on precise recognition of the boundaries between various terranes. One such major suture zone, which records the collisional history of the Siberian marginal arc system (Chinese Altai) with intra-oceanic arc systems (East/West Junggar), is the Irtysh shear zone in NW China. The spatial continuity and the tectonic nature of this shear zone are still poorly understood, but its development has supposedly made a significant impact on the architecture of the western Central Asian orogenic belt and the formation of the Kazakhstan orocline. Here, we provide new insight into the evolution of this shear zone based on detrital zircon ages, Hf isotope composition, structural data and 40 Ar/ 39 Ar age constraints on the timing of deformation. Our results show a major discrepancy in detrital zircon populations and Hf model ages across the southern Chinese Altai and the northern East/West Junggar, thus allowing us to map the exact location of the tectonic boundary. Detrital zircon data constrain the initial closure of the Ob-Zaisan Ocean to the late Carboniferous (〈323 Ma), and new structural and 40 Ar/ 39 Ar geochronological data shed light on the subsequent collisional processes. We propose that the collisional zone between the Chinese Altai and the East/West Junggar was initially subjected to crustal thickening at ca. 323–295 Ma, followed by orogen-parallel extension (ca. 295 Ma) and transpressional deformation (ca. 286–253 Ma). The closure of the Ob-Zaisan Ocean in NW China postdates the initial phase of oroclinal bending in the western Central Asian orogenic belt, thus indicating that oroclinal bending initiated during subduction. Based on our new constraints and other available geological data, we suggest that the early stage of oroclinal bending was likely driven by slab rollback.
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Geological Society of America (GSA)
    In: Geology
    Publication Date: 2019
    Description: 〈span〉〈div〉Abstract〈/div〉We documented occurrences of native copper (Cu), silver (Ag), and gold (Au) in a pāhoehoe flow from Kīlauea volcano (Hawaii, USA), an a‘ā flow from Mauna Loa volcano (Hawaii), and a mid-oceanic-ridge basalt (MORB) from the Chile Ridge (southeastern Pacific Ocean). Native Ag in Kīlauea and MORB samples consistently contained minor Cl (〈1 wt%). Native Ag in Hawaiian basalts can occur at the center of nearly circular patches of relatively evolved minerals, which presumably formed after late-stage silicate liquid infilled pipe vesicles. Sulfur loss and oxidation of a Cu-sulfide phase can explain the native Cu, but not Au and Ag deposition. The rare occurrence of native Cu-Au-Ag alloys and the large native Au and Ag grain size suggest separate metal precipitation mechanisms. A fractional crystallization and degassing model envisions initial Au and Ag enrichment in crystallizing interstitial liquid and further enrichment in a separating vapor phase. From the flow interior, the metals ascend through ephemeral pipe vesicles as bisulfide (Au) or chloride (Ag) vapor complexes and precipitate in the transition zone below the upper vesicular zone, owing to temperature and oxidation state changes. Our results support igneous vapor transport of ore elements in mafic plutonic systems and imply preconcentration of gold during lava solidification before later hydrothermal remobilization.〈/span〉
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...