ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-05-30
    Description: The ~50 m slip of the Tohoku earthquake occurred along a very fine grained red-brown smectitic clay horizon subducting in the Japan Trench. This clay, cored in the plate boundary fault at Integrated Ocean Drilling Program Expedition 345, Site C0019, correlates with similar pelagic clay recovered seaward of the trench at Deep Sea Drilling Project Sites 436 and 1149. Comparable clays occur throughout the northwest Pacific Basin. Backtracking of ocean drilling Sites 436, C0019, and 1149 indicates that they formed during the Early Cretaceous at the Kula-Pacific Ridge. These sites traveled northwestward through the equatorial zone, accumulating siliceous and calcareous oozes until ca. 100–85 Ma. Sites 436, C0019, and 1149 then entered the realm of pelagic clay deposition where they remained until ca. 15 Ma. From ca. 15 Ma to the present, Sites 436, C0019, and 1149 accumulated clays and silty clays with variable amounts of siliceous microfossils and volcanic ash, representing the transition from deep-sea conditions to a continental margin sedimentary environment. The predicted backtracked vertical sequence of sediments fits well with the cores at Sites 436, 1149, and C0019, after accounting for structural complications in the latter. Pelagic clay occurs in numerous boreholes penetrating the relatively smooth ocean floor of the Pacific plate north and northeast of the Tohoku earthquake. Here the widespread pelagic clay apparently fosters tsunami and tsunamigenic earthquakes. Seamounts rising above the normal oceanic crust accumulated sequences of calcareous sediments as their crests remained above the calcite compensation depth for most of their history. A seafloor including pelagic clay and carbonate-covered seamounts occurs south and southeast of the southern extent of the Tohoku earthquake rupture zone. This area has no historic tsunami or tsunamigenic earthquakes along the Japan and Izu-Bonin Trenches with the possible exception of the poorly located Enpo earthquake of A.D. 1677. We believe that the seamounts incoming on the oceanic plate to the south and southeast of the Tohoku rupture zone interfere with long-distance propagation of slip in the pelagic clay, limiting earthquake magnitude, shallow slip, and tsunami generation.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-09
    Description: The thickness of an active plate boundary fault is an important parameter for understanding the strength and spatial heterogeneity of fault behavior. We have compiled direct measurements of the thickness of subduction thrust faults from active and ancient examples observed by ocean drilling and field studies in accretionary wedges. We describe a general geometric model for subduction thrust décollements, which includes multiple simultaneously active, anastomosing fault strands tens of meters thick. The total thickness encompassing all simultaneously active strands increases to ~100–350 m at ~1–2 km below seafloor, and this thickness is maintained down to a depth of ~15 km. Thin sharp faults representing earthquake slip surfaces or other discrete slip events are found within and along the edges of the tens-of-meters-thick fault strands. Although flattening, primary inherited chaotic fabrics, and fault migration through subducting sediments or the frontal prism may build mélange sections that are much thicker (to several kilometers), this thickness does not describe the active fault at any depth. These observations suggest that models should treat the subduction thrust plate boundary fault as 〈1–20 cm thick during earthquakes, with a concentration of postseismic and interseismic creep in single to several strands 5–35 m thick, with lesser distributed interseismic deformation in stratally disrupted rocks surrounding the fault strands.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...