ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-04-25
    Description: Biotic gas generation from the degradation of organic carbon in marine sediments supplies and maintains gas hydrates throughout the world’s oceans. In nascent, ultraslow-spreading ocean basins, methane generation can also be abiotic, occurring during the high-temperature (〉200 °C) serpentinization of ultramafic rocks. Here, we report on the evolution of a growing Arctic gas- and gas hydrate–charged sediment drift on oceanic crust in eastern Fram Strait, a tectonically controlled, deep-water gateway between the subpolar North Atlantic and Arctic Oceans. Ultraslow-spreading ridges between northwest Svalbard and northeast Greenland permit the sustained interaction of a mid-ocean ridge transform fault and developing sediment drift, on both young (〈10 Ma) and old (〉10 Ma) oceanic crust, since the late Miocene. Geophysical data image the gas-charged drift and crustal structure and constrain the timing of a major 30 km lateral displacement of the drift across the Molloy transform fault. We describe the buildup of a 2 m.y., long-lived gas hydrate– and free gas–charged drift system on young oceanic crust that may be fed and maintained by a dominantly abiotic methane source. Ultraslow-spreading, sedimented ridge flanks represent a previously unrecognized carbon reservoir for abiotic methane that could supply and maintain deep-water methane hydrate systems throughout the Arctic.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-05-03
    Description: Redox-sensitive detrital grains such as pyrite and uraninite in sedimentary successions provide one of the most conspicuous geological clues to a different composition of the Archean and early Paleoproterozoic atmosphere. Today, these minerals are rapidly chemically weathered within short transport distances. Prior to the rise of oxygen, low O 2 concentrations allowed their survival in siliciclastic deposits with grain erosion tied only to physical transport processes. After the rise of oxygen, redox-sensitive detrital grains effectively vanish from the sedimentary record. To get a better understanding of the timing of this transition, we examined sandstones recorded in a scientific drill core from the South African 2.415 Ga Koegas Subgroup, a mixed siliciclastic and iron formation–bearing unit deposited on the western deltaic margin of the Kaapvaal craton in early Paleoproterozoic time. We observed detrital pyrite and uraninite grains throughout all investigated sandstone beds in the section, indicating the rise of oxygen is younger than 2.415 Ga. To better understand how observations of detrital pyrite and uraninite in sedimentary rocks can quantitatively constrain Earth surface redox conditions, we constructed a model of grain erosion from chemical weathering and physical abrasion to place an upper limit on ancient environmental O 2 concentrations. Even conservative model calculations for deltaic depositional systems with sufficient transport distances (approximately hundreds of kilometers) show that redox-sensitive detrital grains are remarkably sensitive to environmental O 2 concentrations, and they constrain the Archean and early Paleoproterozoic atmosphere to have 〈3.2 x 10 –5 atm of molecular O 2 . These levels are lower than previously hypothesized for redox-sensitive detrital grains, but they are consistent with estimates made from other redox proxy data, including the anomalous fractionation of sulfur isotopes. The binary loss of detrital pyrite and uraninite from the sedimentary record coincident with the rise of oxygen indicates that atmospheric O 2 concentrations rose substantially at this time and were never again sufficiently low (〈0.01 atm) to enable survival and preservation of these grains in short transport systems.
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...