ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-07-22
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-10-20
    Description: Field mapping and lidar analysis of surface faulting patterns expressed in flights of geologically similar fluvial terraces at the well-known Branch River and Saxton River sites along the Wairau (Alpine) and Awatere strike-slip faults, South Island, New Zealand, reveal that fault-related deformation patterns expressed in the topography at these sites are markedly less structurally complex along the higher-displacement (hundreds of kilometers), structurally mature Wairau fault than along the Awatere fault (~13–20 km total slip). These differences, which are generally representative of the surface traces of these faults, provide direct evidence that surface faulting becomes structurally simpler with increasing cumulative fault offset. We also examine the degree to which off-fault deformation (OFD) is expressed in the landscape at the Saxton River site along the less structurally mature Awatere fault. Significantly greater amounts of OFD are discernible as a wide damage zone (~460 m fault-perpendicular width) in older (ca. 15 ka), more-displaced (64–74 m) fluvial terraces than in younger (ca. 1–7 ka), less-displaced (〈55 m) terraces; no OFD is discernible in the lidar data on the least-displaced (〈35 m) terraces. From this, we infer that OFD becomes progressively more geomorphically apparent with accumulating displacement. These observations imply that (1) the processes that accommodate OFD are active during each earthquake, but may not be evident in deposits that have experienced relatively small displacements; (2) structures accommodating OFD will become progressively geomorphically clearer with increasing displacement; (3) geomorphic measurements of overall fault zone width taken in deposits that have experienced small displacements will be underestimates; and (4) fault slip rates based on geomorphic surface offsets will be underestimates for immature faults if based solely on measurements along the high-strain fault core.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-09-30
    Description: Detailed analysis of continuously cored boreholes and cone penetrometer tests (CPTs), high-resolution seismic-reflection data, and luminescence and 14 C dates from Holocene strata folded above the tip of the Ventura blind thrust fault constrain the ages and displacements of the two (or more) most recent earthquakes. These two earthquakes, which are identified by a prominent surface fold scarp and a stratigraphic sequence that thickens across an older buried fold scarp, occurred before the 235-yr-long historic era and after 805 ± 75 yr ago (most recent folding event[s]) and between 4065 and 4665 yr ago (previous folding event[s]). Minimum uplift in these two scarp-forming events was ~6 m for the most recent earthquake(s) and ~5.2 m for the previous event(s). Large uplifts such as these typically occur in large-magnitude earthquakes in the range of M w 7.5–8.0. Any such events along the Ventura fault would likely involve rupture of other Transverse Ranges faults to the east and west and/or rupture downward onto the deep, low-angle décollements that underlie these faults. The proximity of this large reverse-fault system to major population centers, including the greater Los Angeles region, and the potential for tsunami generation during ruptures extending offshore along the western parts of the system highlight the importance of understanding the complex behavior of these faults for probabilistic seismic hazard assessment.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-01-20
    Description: Alluvial fans displaced by normal faults of the Black Mountains fault zone at Badwater and Mormon Point in Death Valley were mapped, surveyed, and dated using optically stimulated luminescence (OSL) and 10 Be terrestrial cosmogenic nuclide (TCN) methods. Applying TCN methods to Holocene geomorphic surfaces in Death Valley is challenging because sediment flux is slow and complex. However, OSL dating produces consistent surface ages, yielding ages for a regionally recognized surface (Qg3a) of 4.5 ± 1.2 ka at Badwater and 7.0 ± 1.0 ka at Mormon Point. Holocene faults offsetting Qg3a yield horizontal slip rates directed toward 323° of 0.8 +0.3/–0.2 mm/yr and 1.0 ± 0.2 mm/yr for Badwater and Mormon Point, respectively. These slip rates are slower than the ~2 mm/yr dextral slip rate of the southern end of the northern Death Valley fault zone and are half as fast as NNW-oriented horizontal rates documented for the Panamint Valley fault zone. This indicates that additional strain is transferred southwestward from northern Death Valley and Black Mountains fault zones onto the oblique-normal dextral faults of the Panamint Valley fault zone, which is consistent with published geodetic modeling showing that current opening rates of central Death Valley along the Black Mountains fault zone are about three times slower than for Panamint Valley. This suggests that less than half of the geodetically determined ~9–12 mm/yr of right-lateral shear across the region at the latitude of central Death Valley is accommodated by slip on well-defined faults and that distributed deformational processes take up the remainder of this slip transferred between the major faults north of the Garlock fault.
    Print ISSN: 1941-8264
    Electronic ISSN: 1947-4253
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-01-24
    Description: Ten years of teleseismic earthquakes recorded by broadband seismic instruments from the Anza network–USArray stations around the San Jacinto fault were used to create P receiver function images of the lithospheric structure beneath this major strike-slip fault. Analyses of back-azimuthal variation and location of the conversion points near the fault suggest an ~8 km vertical offset of the Moho directly beneath the San Jacinto fault. This implies that the fault extends through the entire crust and into the mantle lithosphere, supporting the idea that the strain in the lower crust is localized within a narrow zone. The Moho offset and surface trace of the San Jacinto fault zone are coincident with a compositional boundary in the Peninsular Ranges batholith previously identified in potential field geophysical data and Sr isotope analyses. The position of the offset with respect to this relict geologic feature, which predates the pluton emplacement that formed the batholith, may be a controlling factor in strain location and plate-boundary fault initiation.
    Print ISSN: 1941-8264
    Electronic ISSN: 1947-4253
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-02-23
    Description: Slip rates represent the average displacement across a fault over time and are essential to estimating earthquake recurrence for probabilistic seismic hazard assessments. We demonstrate that the slip rate on the western segment of the Puente Hills blind thrust fault system, which is beneath downtown Los Angeles, California (USA), has accelerated from ~0.22 mm/yr in the late Pleistocene to ~1.33 mm/yr in the Holocene. Our analysis is based on syntectonic strata derived from the Los Angeles River, which has continuously buried a fold scarp above the blind thrust. Slip on the fault beneath our field site began during the late-middle Pleistocene and progressively increased into the Holocene. This increase in rate implies that the magnitudes and/or the frequency of earthquakes on this fault segment have increased over time. This challenges the characteristic earthquake model and presents an evolving and potentially increasing seismic hazard to metropolitan Los Angeles.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...