ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-03-23
    Description: In contrast to the long narrow volcanic chains in the Pacific Ocean, Atlantic hotspot tracks, in particular in the South Atlantic (e.g., Tristan-Gough, Discovery, Shona, and Bouvet), are irregular and, in some cases, diffuse and discontinuous. An important question is whether this irregularity results from tectonic dismemberment of the tracks or if it represents differences in the size, structure, and strength of the melting anomalies. Here we present new age and geochemical data from volcanic samples from Richardson Seamount, Agulhas Ridge along the Agulhas-Falkland Fracture Zone (AFFZ), and Meteor Rise. Six samples yielded ages of 83–72 Ma and are 10–30 m.y. younger than the underlying seafloor, indicating that they are not on-axis seamounts associated with seafloor spreading. The incompatible element and Sr-Nd-Pb-Hf isotopic compositions range from compositions similar to those of the Gough domain of the nearby Tristan-Gough hotspot track to compositions similar to samples from the Shona bathymetric and geochemical anomaly along the southern Mid-Atlantic Ridge (49°–55°S), indicating the existence of a Shona hotspot as much as 84 m.y. ago and its derivation from a source region similar to that of the Tristan-Gough hotspot. Similar morphology, ages, and geochemistry indicate that the Richardson, Meteor, and Orcadas seamounts originally formed as a single volcano that was dissected and displaced 3500 km along the AFFZ, providing a dramatic example of how plate tectonics can dismantle and disseminate a hotspot track across an ocean basin.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-02-20
    Description: Asymmetrically zoned hotspot tracks in the Pacific Ocean are interpreted to have formed from zoned plumes originating from the large-scale, lower-mantle, low-seismic-velocity anomaly (superplume?) beneath the southern Pacific, providing direct information about lower-mantle compositional heterogeneity. New trace-element and Sr-Nd-Hf-Pb isotope data from the classic Tristan-Gough hotspot track in the South Atlantic also display a bilateral, asymmetric zonation with two distinct mantle source components, making it the first zoned plume to be recognized overlying the African superplume. The plume zonation can be traced for 70 m.y., four times longer than recognized for Pacific zoned hotspot tracks. These findings confirm that the proposed zonation of Pacific hotspots is not simply a geochemical oddity, but could be a major feature of plumes derived from lower-mantle superplumes. We propose that the enriched southern Gough subtrack source with elevated 207 Pb/ 204 Pb and 208 Pb/ 204 Pb at a given 206 Pb/ 204 Pb, but low 143 Nd/ 144 Nd and 176 Hf/ 177 Hf (DUPAL-like composition), may reflect the African superplume composition, whereas the more depleted northern Tristan subtrack source could represent a mixture of the superplume with the surrounding depleted mantle. Our results strengthen arguments that the enriched signature (DUPAL anomaly) in the South Atlantic could be derived from the lower mantle.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-03-24
    Description: The rocks in the crustal section of the Oman ophiolite show an increasing input of a subduction component with time, most likely reflecting the generation of the ophiolite above a subducting slab. Field relations, new geochemical data, and Nd-Hf isotope data for felsic to mafic intrusive rocks in the mantle harzburgite from the Haylayn block in the Oman ophiolite suggest late magmatic events in a mantle wedge shortly before obduction of the ophiolite. Incompatible element contents and low Nd and Hf of the felsic rocks exclude differentiation from mafic magmas, but are consistent with an origin by partial melting of pelagic sediments similar to leucogranites in continental collision zones. These melts apparently mixed with mafic magmas resembling enriched late-stage lavas from the ophiolite. The leucogranitic intrusions into the mantle wedge confirm the transfer of melts of sediments from the subducted plate into the mantle at subduction zones. We suggest that the enrichment of Rb, K, and Pb observed in the Oman boninites is caused by addition of melts of sediments similar to those from the Haylayn block to the boninite source in the mantle wedge.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-04-28
    Description: The existence of an intrinsic depleted component in mantle plumes has previously been proposed for several hotspots in the Pacific, Atlantic, and Indian Oceans. However, formation of these depleted basalts is often associated with unusual tectonomagmatic processes such as plume-ridge interaction or multistage melting at plume initiation, where depleted basalts could reflect entrainment and melting of depleted upper mantle. Late Cretaceous to middle Eocene seamounts that accreted in Costa Rica and are part of the early Galapagos hotspot track provide new insights into the occurrence and nature of intrinsic depleted components. The Paleocene (ca. 62 Ma) seamounts include unusually depleted basalts that erupted on the Farallon plate far from a mid-ocean ridge. These basalts closely resemble Gorgona komatiites in terms of trace element and radiogenic isotope composition, suggesting formation from a similar, refractory mantle source. We suggest that this source may be common to plumes, but is only rarely sampled due to excessive extents of melting required to extract melts from the most refractory parts of a heterogeneous mantle plume.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-04-15
    Description: In contrast to the long narrow volcanic chains in the Pacific Ocean, Atlantic hotspot tracks, in particular in the South Atlantic (e.g., Tristan-Gough, Discovery, Shona, and Bouvet), are irregular and, in some cases, diffuse and discontinuous. An important question is whether this irregularity results from tectonic dismemberment of the tracks or if it represents differences in the size, structure, and strength of the melting anomalies. Here we present new age and geochemical data from volcanic samples from Richardson Seamount, Agulhas Ridge along the Agulhas-Falkland Fracture Zone (AFFZ), and Meteor Rise. Six samples yielded ages of 83–72 Ma and are 10–30 m.y. younger than the underlying seafloor, indicating that they are not on-axis seamounts associated with seafloor spreading. The incompatible element and Sr-Nd-Pb-Hf isotopic compositions range from compositions similar to those of the Gough domain of the nearby Tristan-Gough hotspot track to compositions similar to samples from the Shona bathymetric and geochemical anomaly along the southern Mid-Atlantic Ridge (49°–55°S), indicating the existence of a Shona hotspot as much as 84 m.y. ago and its derivation from a source region similar to that of the Tristan-Gough hotspot. Similar morphology, ages, and geochemistry indicate that the Richardson, Meteor, and Orcadas seamounts originally formed as a single volcano that was dissected and displaced 3500 km along the AFFZ, providing a dramatic example of how plate tectonics can dismantle and disseminate a hotspot track across an ocean basin.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-08-01
    Description: Bowers Ridge is an ~700 km long arcuate ridge behind the Central Aleutian Arc in the Bering Sea. The lack of age and geochemical data for the ridge has hampered the development of geodynamic models for the evolution of the North Pacific and the Aleutian–Bering Sea region. Here we present the first geochemical and 40 Ar/ 39 Ar age data for the volcanic basement of Bowers Ridge and a seamount from the western end of the ridge sampled during R/V Sonne cruise SO201-1b. The northern Bowers Ridge basement (26–32 Ma) consists of mafic to intermediate calc-alkaline rocks with adakite-like (Sr/Y = 33–53, La N /Yb N = 3.3–7.8), high field strength element (HFSE)–depleted (e.g., Nb N /La N = 0.07–0.31) trace element patterns and Sr-Nd-Pb isotope compositions within the Western Aleutian Arc array, implying magma generation above an obliquely subducting slab. The seamount samples (22–24 Ma) are HFSE-rich alkaline olivine basalts (La N /Yb N = 3.3–3.9, Nb N /La N = 1.0–1.4) with minor arc-type trace element signatures (Pb N /Ce N = 1.4–1.6, K N /Nb N = 1.7–1.9) but with Pacific mid-oceanic-ridge basalt (MORB)–like isotopic compositions, pointing to an origin by small-degree decompression melting from slightly subduction-modified mantle. The geochemistry of the recovered rocks can be explained by highly oblique subduction along the northern part of Bowers Ridge in its present-day configuration, consistent with an in-situ origin of Bowers Ridge as a Cenozoic island arc.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-01-30
    Description: At the present, the geochemical influence of the Galápagos hotspot (offshore South America) can be seen only along the Galápagos spreading center, north of the hotspot. It is possible, however, that Galápagos plume material also reached the East Pacific Rise in the past. Detecting such influence would be of particular importance for the interpretation of geochemical data from oceanic crust at Ocean Drilling Program (ODP) Site 1256, which formed ~15 m.y. ago at the East Pacific Rise during a Miocene period of superfast spreading, and is considered to be a reference site for oceanic crust produced at fast-spreading ridges. Here we present geochemical data from Miocene basaltic crust (23–7 Ma) drilled at several Deep Sea Drilling Project (DSDP), ODP, and Integrated Ocean Drilling Program (IODP) sites that formed along the East Pacific Rise between 3°S and 7°N. Lavas formed between ca. 22.5 and ca. 11 Ma show enriched, Galápagos plume–like Pb and Nd isotope ratios (with a peak in enrichment between ≥18 and 12 Ma) compared to lavas created shortly before or after this time interval. Despite their enriched isotope composition, these samples generally show depletion in more-incompatible, relative to less-incompatible, trace elements. Derivation from an enriched Galápagos plume source that had experienced recent melt extraction before it melted further beneath the East Pacific Rise can explain the combined incompatible-trace-element depletion and isotopic enrichment of the 22.5–11 Ma lavas. The influence of plume material correlates with the interval of superfast spreading along the equatorial East Pacific Rise, suggesting a causal relationship. Enhanced ridge-plume interaction ("ridge suction") due to superfast spreading could have facilitated the flow of Galápagos plume material to the ridge. On the other hand, the arrival of Galápagos-type signatures took place immediately after formation of the Galápagos spreading center, which could have provided a pathway for hot plume material to spread into the main ridge network.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-01-21
    Description: Volcanic sequences on ocean islands record the temporal evolution of underlying magmatic systems and provide insights into how silicic crust is produced away from convergent margins. Assimilation has often been suspected to contribute, but the detection of such a process and its evolving maturity during migration across a mantle plume is less well documented. Here we present new major and trace element and Sr-Nd-Pb-U-Th-Ra-Pa isotope data that facilitate comparison of basanite to phonolite evolution on Tenerife (Canary Islands) with that shown by published data from La Palma. On both islands, ( 230 Th/ 238 U) ratios decrease with differentiation from parental magmas with 230 Th excess toward different, silicic contaminants in secular equilibrium. On La Palma, this is inferred to reflect assimilation of small amounts of mafic wall rock. On Tenerife, both ( 230 Th/ 238 U) and ( 231 Pa/ 235 U) ratios decrease toward 1 with increasing differentiation, and this is accompanied by a subtle increase in Pb isotope ratios. At the same time, ( 226 Ra/ 230 Th) ratios change from 〉1 to 〈1 (a hitherto unreported magnitude). The Tenerife assimilant is thus constrained to be a partial melt of syenite formed in equilibrium with residual feldspar. The differences reflect a primarily deeper, more mafic magma system beneath La Palma during its late shield-building stage, whereas recent magmatic evolution at Tenerife occurs primarily at lower temperatures in small, shallower magma systems formed during its post–basaltic shield stage. Differentiation takes millennia or less.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...