ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-02-20
    Description: The noble gases, which are chemically inert under normal terrestrial conditions but vary systematically across a wide range of atomic mass and diffusivity, offer a multicomponent approach to investigating gas dynamics in unsaturated soil horizons, including transfer of gas between saturated zones, unsaturated zones, and the atmosphere. To evaluate the degree to which fractionation of noble gases in the presence of an advective–diffusive flux agrees with existing theory, a simple laboratory sand column experiment was conducted. Pure CO 2 was injected at the base of the column, providing a series of constant CO 2 fluxes through the column. At five fixed sampling depths within the system, samples were collected for CO 2 and noble gas analyses, and ambient pressures were measured. Both the advection–diffusion and dusty gas models were used to simulate the behavior of CO 2 and noble gases under the experimental conditions, and the simulations were compared with the measured depth-dependent concentration profiles of the gases. Given the relatively high permeability of the sand column (5 x 10 –11 m 2 ), Knudsen diffusion terms were small, and both the dusty gas model and the advection–diffusion model accurately predicted the concentration profiles of the CO 2 and atmospheric noble gases across a range of CO 2 flux from ~700 to 10,000 g m –2 d –1 . The agreement between predicted and measured gas concentrations demonstrated that, when applied to natural systems, the multi-component capability provided by the noble gases can be exploited to constrain component and total gas fluxes of non-conserved (CO 2 ) and conserved (noble gas) species or attributes of the soil column relevant to gas transport, such as porosity, tortuosity, and gas saturation.
    Electronic ISSN: 1539-1663
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-04-29
    Description: Rocks from the 23 Ma Lake City caldera show diverse chemical affinities attesting to a complex magmatic system beneath the caldera. Field and geochemical data from ignimbrites and intrusions constrain magma storage and magma interactions during the formation of the caldera. Two geochemically distinct magma batches erupted during caldera formation: batch A, consisting of rhyolites and trachytes, and batch B, consisting of dacites and trachyandesites. The ignimbrites of the Lower, Middle, and Upper Sunshine Peak Tuff represent the bulk of erupted batch A magma, with an increasing proportion of trachyte to rhyolite as the eruption progressed. Overall, the observed trends of major and trace elements are consistent with the sequential eruption of a magmatic system with a rhyolitic upper portion and trachytic lower portion. The Middle Sunshine Peak Tuff contains two distinct types of pumice clast, while the Upper Sunshine Peak Tuff contains four distinct pumice clast types, with one type chemically related to batch B magma. The link between the rhyolite and trachyte of batch A is supported by major- and trace-element geochemical modeling of an initially trachytic magma that fractionated and was subjected to crystal/melt segregation following 50%–60% crystallization. Compositional gaps and chemical heterogeneity in the bulk ignimbrite composition show that the proportions of these different magma types varied significantly during eruption. We propose that the fractionating batch A and B magmas formed distinct magma pods, some containing residual magma mush, that were tapped during different phases of caldera formation. After collapse, dacite lavas of batch B were erupted concurrent with resurgent uplift from shallow intrusion of both residual mingled batch A and batch B magma. In summary, our observations suggest (1) a complex magma chamber geometry from two fractionating magma batches, and (2) magma replenishment and accelerated periods of magma reorganization in the shallow magma plumbing system during a single caldera cycle at Lake City.
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...