ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Geological Society of America (GSA)  (2)
  • Seismological Society of America (SSA)  (1)
  • 1
    Publication Date: 2015-09-15
    Description: Upwelling hot mantle plumes are thought to disintegrate continental lithosphere and are considered to be drivers of active continental breakup. The formation of the Walvis Ridge during the opening of the South Atlantic is related to a putative plume-induced breakup. We investigated the crustal structure of the Walvis Ridge (southeast Atlantic Ocean) at its intersection with the continental margin and searched for anomalies related to the possible plume head. The overall structure we identify suggests that no broad plume head existed during opening of the South Atlantic and anomalous mantle melting occurred only locally. We therefore question the importance of a plume head as a driver of continental breakup and further speculate that the hotspot was present before the rifting, leaving a track of kimberlites in the African craton.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-07-30
    Description: The causes for the formation of large igneous provinces and hotspot trails are still a matter of considerable dispute. Seismic tomography and other studies suggest that hot mantle material rising from the core-mantle boundary (CMB) might play a significant role in the formation of such hotspot trails. An important area to verify this concept is the South Atlantic region, with hotspot trails that spatially coincide with one of the largest low-velocity regions at the CMB, the African large low shear-wave velocity province. The Walvis Ridge started to form during the separation of the South American and African continents at ca. 130 Ma as a consequence of Gondwana breakup. Here, we present the first deep-seismic sounding images of the crustal structure from the landfall area of the Walvis Ridge at the Namibian coast to constrain processes of plume-lithosphere interaction and the formation of continental flood basalts (Paraná and Etendeka continental flood basalts) and associated intrusive rocks. Our study identified a narrow region (〈100 km) of high-seismic-velocity anomalies in the middle and lower crust, which we interpret as a massive mafic intrusion into the northern Namibian continental crust. Seismic crustal reflection imaging shows a flat Moho as well as reflectors connecting the high-velocity body with shallow crustal structures that we speculate to mark potential feeder channels of the Etendeka continental flood basalt. We suggest that the observed massive but localized mafic intrusion into the lower crust results from similar-sized variations in the lithosphere (i.e., lithosphere thickness or preexisting structures).
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-12-05
    Description: The West Iberia Lithosphere and Asthenosphere Structure (WILAS) project densely covered Portugal with broadband seismic stations for 2 yrs. Here we provide an overview of the deployment, and we characterize the network ambient noise and its sources. After explaining quality control, which includes the assessment of sensor orientation, we characterize the background noise in the short-period (SP), microseismic, and long-period (LP) bands. We observe daily variations of SP noise associated with anthropogenic activity. Temporary and permanent stations present very similar noise levels at all periods, except at horizontal LPs, where temporary stations record higher noise levels. We find that median noise levels are extremely homogeneous across the network in the microseismic band (3–20 s) but vary widely outside this range. The amplitudes of microseismic noise display a strong seasonal variation. The seasonality is dominated by very-long-period double-frequency microseisms (8 s), probably associated with winter storms. Stacks of ambient noise amplitudes show that some microseismic noise peaks are visible across the whole ground-motion spectrum, from 0.3 to 100 s. Periods of increased microseismic amplitudes generally correlate with ocean conditions offshore of Portugal. Some seismic records display an interesting 12 hr cycle of LP (100-s) noise, which might be related to atmospheric tides. Finally, we use plots of power spectral density versus time to monitor changes in LP instrumental response. The method allows the identification of the exact times at which LP response changes occur, which is required to improve the understanding of this instrumental artifact and to eventually correct data. Online Material: Figures and movie illustrating the variation of seismic noise amplitudes with sensor type, time, and soil type.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...