ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Geological Society of America  (1)
  • John Wiley & Sons  (1)
Sammlung
Schlagwörter
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2021-09-20
    Beschreibung: Correct interpretation of soft-bodied fossils relies on a thorough understanding of their taphonomy. While the focus has often been on the primary roles of decay and early diagenesis, the impacts of deeper burial and metamorphism on fossil preservation are less well understood. We document a sequence of late-stage mineral replacements in panarthropod fossils from the Sirius Passet Lagerstätte (North Greenland), an important early Cambrian Burgess Shale–type (BST) biota. Muscle and gut diverticula were initially stabilized by early diagenetic apatite, prior to being pervasively replaced by quartz and then subordinate chlorite, muscovite, and chloritoid during very low- to low-grade metamorphism. Each new mineral replicates the soft tissues with different precision and occurs in particular anatomical regions, imposing strong biases on the biological information retained. Muscovite and chloritoid largely obliterate the tissues’ original detail, suggesting that aluminum-rich protoliths may have least potential for conserving mineralized soft tissues in metamorphism. Overall, the fossils exhibit a marked shift toward mineralogical equilibration with the matrix, obscuring primary taphonomic modes. Sequential replacement of the phosphatized soft tissues released phosphorus to form new accessory monazite (and apatite and xenotime), whose presence in other BST biotas might signal the prior, more widespread, occurrence of this primary mode of preservation. Our results provide critical context for interpreting the Sirius Passet biota and for identifying late-stage overprints in other biotas.
    Print ISSN: 0091-7613
    Digitale ISSN: 1943-2682
    Thema: Geologie und Paläontologie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 28 (2013): 307–318, doi:10.1002/palo.20030.
    Beschreibung: Antarctic Intermediate Water (AAIW) and Subantarctic Mode Water (SAMW) are the main conduits for the supply of dissolved silicon (silicic acid) from the deep Southern Ocean (SO) to the low-latitude surface ocean and therefore have an important control on low-latitude diatom productivity. Enhanced supply of silicic acid by AAIW (and SAMW) during glacial periods may have enabled tropical diatoms to outcompete carbonate-producing phytoplankton, decreasing the relative export of inorganic to organic carbon to the deep ocean and lowering atmospheric pCO2. This mechanism is known as the “silicic acid leakage hypothesis” (SALH). Here we present records of neodymium and silicon isotopes from the western tropical Atlantic that provide the first direct evidence of increased silicic acid leakage from the Southern Ocean to the tropical Atlantic within AAIW during glacial Marine Isotope Stage 4 (~60–70 ka). This leakage was approximately coeval with enhanced diatom export in the NW Atlantic and across the eastern equatorial Atlantic and provides support for the SALH as a contributor to CO2 drawdown during full glacial development.
    Beschreibung: The work is part of a wider project on the MIS 5/4 transition, supervised by S. B. and supported by NERC (UK) grant NE/F002734/1. K.R.H. is funded by National Science Foundation grant MCG-1029986. T.v.d.F. acknowledges funding from the European Commission (IRG 230828).
    Beschreibung: 2013-12-27
    Schlagwort(e): Silica leakage ; Diatom ; Carbon dioxide ; SAMW ; AAIW
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Format: application/msword
    Format: image/jpeg
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...