ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2012-02-01
    Beschreibung: Liquid clouds play a profound role in the global radiation budget, but it is difficult to retrieve their vertical profile remotely. Ordinary narrow-field-of-view (FOV) lidars receive a strong return from such clouds, but the information is limited to the first few optical depths. Wide-angle multiple-FOV lidars can isolate radiation that is scattered multiple times before returning to the instrument, often penetrating much deeper into the cloud than does the single-scattered signal. These returns potentially contain information on the vertical profile of the extinction coefficient but are challenging to interpret because of the lack of a fast radiative transfer model for simulating them. This paper describes a variational algorithm that incorporates a fast forward model that is based on the time-dependent two-stream approximation, and its adjoint. Application of the algorithm to simulated data from a hypothetical airborne three-FOV lidar with a maximum footprint width of 600 m suggests that this approach should be able to retrieve the extinction structure down to an optical depth of around 6 and a total optical depth up to at least 35, depending on the maximum lidar FOV. The convergence behavior of Gauss–Newton and quasi-Newton optimization schemes are compared. Results are then presented from an application of the algorithm to observations of stratocumulus by the eight-FOV airborne Cloud Thickness from Off-Beam Lidar Returns (THOR) lidar. It is demonstrated how the averaging kernel can be used to diagnose the effective vertical resolution of the retrieved profile and, therefore, the depth to which information on the vertical structure can be recovered. This work enables more rigorous exploitation of returns from spaceborne lidar and radar that are subject to multiple scattering than was previously possible.
    Print ISSN: 1558-8424
    Digitale ISSN: 1558-8432
    Thema: Geographie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2016-10-21
    Print ISSN: 0016-7606
    Digitale ISSN: 1943-2674
    Thema: Geologie und Paläontologie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-06-14
    Beschreibung: The eastern flank of the Mount Etna stratovolcano is affected by extension and is slowly sliding eastward into the Ionian Sea. The Pernicana fault system forms the border of the northern part of this sliding area. It consists of three E-W–oriented fault sectors that are seismically active and characterized by earthquakes up to 4.7 in magnitude (M) capable of producing ground rupture and damage located mainly along the western and central sectors, and by continuous creep on the eastern sector. A new topographic study of the central sector of the Pernicana fault system shows an overall bell-shaped profile, with maximum scarp height of 35 m in the center of the sector, and two local minima that are probably due to the complex morphological relation between fault scarp and lava flows. We determined the ages of lava flows cut by the Pernicana fault system at 12 sites using cosmogenic 3He and 40Ar/39Ar techniques in order to determine the recent slip history of the fault. From the displacementage relations, we estimate an average throw rate of ~2.5 mm/yr over the last 15 k.y. The slip rate appears to have accelerated during the last 3.5 k.y., with displacement rates of up to ~15 mm/yr, whereas between 3.5 and 15 ka, the throw rate averaged ~1 mm/yr. This increase in slip rate resulted in significant changes in seismicity rates, for instance, decreasing the mean recurrence time of M ≥ 4.7 earthquakes from ~200 to ~20 yr. Based on empirical relationships, we attribute the variation in seismic activity on the Pernicana fault system to factors intrinsic to the system that are likely related to changes in the volcanic system. These internal factors could be fault interdependencies (such as those across the Taupo Rift, New Zealand) or they could represent interactions among magmatic, tectonic, and gravitational processes (e.g., Kīlauea volcano, Hawaii). Given their effect on earthquake recurrence intervals, these interactions need to be fully assessed in seismic hazard evaluations.
    Beschreibung: Published
    Beschreibung: 304-317
    Beschreibung: 1V. Storia e struttura dei sistemi vulcanici
    Beschreibung: JCR Journal
    Beschreibung: open
    Schlagwort(e): Etna ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...