ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Geological Society London
    In:  In: Subaqueous Mass Movements and their Consequences: Advances in Process Understanding, Monitoring and Hazard Assessments. , ed. by Georgiopoulou, A. Special Publications Geological Society London, 500 . Geological Society London, London, pp. 551-566.
    Publication Date: 2020-08-03
    Description: The Tuaheni Landslide Complex (TLC) is characterised by areas of compression upslope and extension downslope. It has been thought to consist of a stack of two genetically linked landslide units identified on seismic data. We use 3D seismic reflection, bathymetry data, and IODP core U1517C (Expedition 372), to understand the internal structures, deformation mechanisms and depositional processes of the TLC deposits. Unit II and Unit III of U1517C correspond to the two chaotic units in 3D seismic data. In the core, Unit II shows deformation whereas Unit III appears more like an in situ sequence. Variance attribute analysis shows that Unit II is split in lobes around a coherent stratified central ridge and is bounded by scarps. By contrast, we find that Unit III is continuous beneath the central ridge and has an upslope geometry that we interpret as a channellevee system. Both units show evidence of lateral spreading due to the presence of the Tuaheni Canyon removing support from the toe. Our results suggest that Unit II and Unit III are not genetically linked, that they are separated substantially in time and they had different emplacement mechanisms, but fail under similar circumstances.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Geological Society London
    In:  In: Subaqueous Mass Movements and their Consequences: Advances in Process Understanding, Monitoring and Hazard. , ed. by Georgiopoulou, A. Special Publications Geological Society London, 500 . Geological Society London, London, pp. 13-26.
    Publication Date: 2020-08-03
    Description: Volcanic archipelagos are a source of numerous on- and offshore geohazards, including explosive eruptions and potentially tsunamigenic large-scale flank-collapses. Fogo Island in the southern Cape Verdes is one of the most active volcanoes in the world, making it both prone to collapse (as evidenced by the ca. 73 ka Monte Amarelo volcanic flank-collapse), and a source of widely-distributed tephra and volcanic material. The offshore distribution of the Monte Amarelo debris avalanche deposits and the surrounding volcaniclastic apron were previously mapped using only medium-resolution bathymetric data. Here, using recently acquired, higher resolution acoustic data, we revisit Fogo's flank-collapse, and find evidence suggesting that the deposition of hummocky volcanic debris originating from the failed eastern flank most likely triggered the contemporaneous, multi-phase failure of pre-existing seafloor sediments. Additionally, we identify, for the first time, multiple mass-transport deposits in the southern part of the volcaniclastic apron of Fogo and Santiago based on the presence of acoustically chaotic deposits in parametric echo sounder data and volcaniclastic turbiditic sands in recovered cores. These preliminary findings indicate a long and complex history of instability on the southern slopes of Fogo and suggest that Fogo may have experienced multiple flank collapses.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...