ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-09-04
    Description: Field and geochemical studies combined with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U–Pb dating set important constraints on the timing and petrogenesis of volcanic rocks of the Neoarchaean Kadiri greenstone belt and the mechanism of crust formation in the eastern Dharwar craton (EDC). The volcanic rocks are divided into three suites: tholeiitic basalts, calc-alkaline high-Mg# andesites and dominant dacites–rhyolites. The basalts (pillowed in places) show flat rare earth element (REE) and primordial mantle-normalized trace element patterns, but have minor negative Nb and Ta anomalies. They are interpreted as mantle plume-related oceanic plateau basalts whose source contained minor continental crustal input. The andesites are characterized by high Mg# (0.66–0.52), Cr and Ni, with depletion of high-field strength elements (HFSE) and enrichment of light REE (LREE) and large-ion lithophile elements (LILE). They were probably derived from a metasomatized mantle wedge overlying a subducted slab in a continental margin subduction zone. The dacites–rhyolites are silicic rocks (SiO 2 = 61–72 wt%) with low Cr and Ni, K 2 O/Na 2 O mostly 0.5–1.1, highly fractionated REE patterns, enrichments of LILE and distinctly negative HFSE anomalies. One rhyolite sample yielded a zircon U–Pb age of 2353 ± 32 Ma. This suite is similar to potassic adakites and is explained as the product of deep melting of thickened crust in the arc with a significant older crustal component. Collision between a continental margin arc with an oceanic plateau followed by slab break-off, upwelling of hot asthenosphere and extensive crustal reworking in a sustained compressional regime is proposed for the geodynamic evolution of the area. This is in corroboration with the scenario of EDC as a Neoarchaean hot orogen as suggested recently by some workers. Supplementary material: Details of whole-rock major and trace element determination, Nd isotope analysis and zircon U–Pb dating and trace element analysis, the geographical coordinates of the samples and the values of the international rock standards analysed are available at http://www.geolsoc.org.uk/SUP18660
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-10-08
    Description: The Neoarchaean Era is characterized by large preserved record of continental crust formation. Yet the actual mechanism(s) of Neoarchaean crustal growth remains controversial. In the northwestern part of the eastern Dharwar craton (EDC) granitoid magmatism started at 2.68 Ga with gneissic granodiorites showing intermediate character between sanukitoid and tonalite–trondhjemite–granodiorite (TTG). This was followed by intrusion of transitional (large-ion lithophile element-enriched) TTGs at 2.58 Ga. Finally 2.53–2.52 Ga sanukitoid and Closepet-type magmatism and intrusion of K-rich leucogranites mark the cratonization in the area. These granitoids mostly display initial negative Nd and Mesoarchaean depleted mantle model ages, suggesting presence of older crust in the area. Available data show that most of the Neoarchaean sodic granitoids in the EDC are transitional TTGs demonstrating the importance of reworking of older crust. It is suggested that the various c. 2.7 Ga greenstone mafic–ultramafic volcanic rocks of EDC formed in oceanic arcs and plateaus which accreted to form continental margin environment. Subsequent 2.7–2.51 Ga granitoid magmatism involved juvenile addition of crust as well as reworking of felsic crust forming transitional TTGs, sanukitoids and K-rich leucogranites. Microcratons were possibly the source of older crustal signatures and their accretion appears to be one of the important processes of Neoarchaean crustal growth globally. Supplementary material: Analytical techniques are available at https://doi.org/10.6084/m9.figshare.c.3470724
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...